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ABSTRACT 
 

The purpose of this study was to identify a metric for measuring students’ performance in the 
Department of Mathematics and Statistics of a public university in Ghana. Some of the students of 
the department are of the view that the current grading system used by the Department does not 
do a good job of distinguishing between the performances of students, as at times students of 
different academic performance could end up with the same Grade Point Average (GPA), a 
performance measure. Data for the research which covers the 2012/2013 third year students of the 
Department were obtained from the university’s student records unit. Principal Component 
Analysis (PCA) was used to analyze the data. Three principal components were retained as rules or 
indices for the classification of students’ performance. A derivative of the first principal 
component, RSI, could serve as a new performance measure for the Department as it takes into 
consideration differences in the raw scores of the students.  
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1.0 INTRODUCTION 
 

The performance of a student in a given semester is gauged by calculating what is referred to as Grade 
Point Average (GPA). The grading system for the raw exams scores used by the Department is as 
shown in Table A1 of Appendix A. 
 

The GPA is found by dividing the sum of the products of the numerical equivalents of the letter grade 
obtained in a course and the corresponding credit hours by the total number of credit hours. Some 
students argue that the system is not fair because two students with different performance could end 
up with the same GPA. To see their point, we examine the information in Table A2 (see Appendix A) 
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concerning Student 1 and Student 2. Suppose the raw scores obtained by the two students in three 
courses, MM, EM and TM and the associated credit hours are as shown in Table A2. 
 

From the information presented in Table A2, it is clear that Student 2 is better in performance than 
Student 1, yet both students have the same GPA. The students argue that a suitable grading system 
should take into consideration any differences in the raw scores. There is therefore the need to explore 
the possibility evolving an alternative performance measure for the Department that could take into 
consideration the concerns of the students. We attempted to come up with an alternative to the 
current grading system by applying the statistical technique of Principal Component Analysis to the raw 
course scores of the student which resulted in the creation of a new instrument referred to as RSI, 
which could potentially address the concerns of the students.  
 

Some students are offered straight admission into a programme of their choice while others are 
offered admission as physical sciences students. Those who are offered admissions as physical sciences 
students may end up finalizing their degree programmes in Physics, Chemistry or Mathematics and 
Statistics Departments. Those who opt for programmes in the Department of Mathematics and 
Statistics may major in mathematics only or statistics only, or in the combined subject of mathematics 
and statistics. Most often, students opt for certain programmes based on their performance in related 
courses they have taken previously.   
 

Our primary aim in the research reported in this paper was to develop a system by which one could 
report the overall performance of a student relative to that of the student’s class mates, tell which 
subject area a student’s aptitude lie and the semester in which a student did relatively better. To 
accomplish this, the following objectives were pursued: rank the overall performance of students, 
determine the subject area in which a student performs better and which of the semesters, first or 
second or both, in which a student’s performance is relatively better.   
 

Section 2 explores the mathematical basis of the major statistical technique, Principal Component 
Analysis, used in analyzing the data and Section 3 presents and discusses the results of the analysis. A 
summary of the research, the findings and the implications of the findings are presented in the last 
section, Section 4. 
 

2.0  MATERIALS AND METHODS 
 

In Principal Component Analysis (PCA) new uncorrelated variables (called Principal Components (PC)) 
are formed which are a linear combination of the original (observable) variables, and the number of 
new variables is equal to the number of old variables. However, the new variables are so formed that 
the first principal component accounts for the highest variance in the data, the second principal 
component accounts for the highest of the remaining variance in the data, the third principal 
component accounts for the highest of the remaining variance not accounted for by the first and 
second components, and so on. Ideally, one would want a situation where the first few principal 
components account for much of the variance in the original data and thereby achieving data reduction 
by replacing the original variables by the first few principal components, for further analysis or 
interpretation of the correlation amongst the indicator variables (Everitt and Dunn 2001; Johnson and 
Wichern 1992; Sharma, 1996).  
 
Given the observed variables  and the coefficients (weights) 

, the principal component   are given by 
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To place a limit on the variance of the  s,    and to guarantee that the new axes 

representing the s are uncorrelated, the weights    are 

estimated subject to the conditions given by Equations  1 and 2 respectively (Sharma, 1996; Everitt and 
Dunn 2001; Johnson and Wichern, 1992). 
 

                                                                                                       .…….   1 

 and 

                                     for all                                              …......   2 

where         
                                 

 

Given the mean   and the standard deviation   of the variable , the transformed variables , 

  given by  

 
 
could be used to form the principal components (Johnson and Wichern, 1992). Expressed in matrix 
notation, the vector of standardized variables could be written as 
 

 
 

where   and   is the standard deviation matrix given by 

 

 
 

,   Var ,     and       

where the variance-covariance matrix    and the correlation matrix    of   are given by  
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is the covariance between variables    and  , each of which has    observations. 

 

The   principal components   are then given by 

 

 
 

where     and  the  s    are the eigenvectors of   . The 

eigenvalue-eigenvector pairs , ,  .  .  .  ,    of       are such that  

,   and . 

 

 
and  

                                                            

 
Thus the proportion of the variance in the data that is accounted for by the    is given by . 

 

2.01  PRINCIPAL COMPONENT LOADINGS 
 

The correlations between a given PC    and a given standardized variable , referred to as the loading 

of variable    on  , is given by  

 
 

The loading, which lies between -1 and 1 inclusive, reflects the degree to which each  influences each 

 given the effect of the other variables ,  (Johnson and Wichern, 1992). The higher the 

absolute value of a loading of a variable on a component, the more influential the variable is in 
interpreting and naming the component. The magnitude of a loading considered to be significant 
depends on the sample size. Hair et al. (2006) recommends a loading of absolute value of at least 0.30 
for a sample size of 350 and 0.35 for a sample size of 250, with lower sample sizes requiring higher 
absolute loading values. However loadings of magnitude greater or equal to 0.50 are thought to be 
more appropriate (Sharma, 1996). 
 

2.02  THE PRINCIPAL COMPONENT AS AN INDEX 
 
Using the principal component as an index requires the determination of principal component scores 
and factor loadings. By substituting the standardized observed values of the variables into the equation 

       
We obtain the values of the ith principal component, referred to as the principal component scores.  
 
Since the first few components almost invariably account for a greater percentage of the variance in 
the original data they can represent most of the information in the original data. Principal components 
analysis is thus regarded as a dimensionality reduction technique as the original p-dimensional data set 
could be represented in a lower m-dimensional space, where m p . In particular, given that each 

principal component is a weighted sum of the original variables and the first few principal components 
account for a reasonably large proportion of the variance in the data, it may be possible to use each of 
these principal components as an index, with the factor loadings providing guidance as to what kind of 
index a given principal component is, as the higher the loading of a variable the greater the influence it 
has on the component. 
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2.0 RESULTS AND DISCUSSION 
 
The data which is the subject of the analysis whose results follow were obtained from the university’s student 
records unit. The data covers the 2012/2013 third year students and is made up of ten courses, six of which are 
Statistics courses and the remaining four, Mathematics courses. The ten courses are the variables considered; 
each with several observations which are the grades of students in the various courses.  

 

3.01  SUMMARY STATISTICS 
 
Table 1 shows the summary statistics of the Data. The mean grades of the Mathematics courses are 
quite close to each other. Probability Distributions (STA 301) and Research Methods (STA 399) have 
their mean grades quite higher than the other four Statistics courses, namely: Statistical Methods I (STA 
303), Sampling Techniques and Survey Methods (STA 302), Design and Analysis of Experiment (STA 
305) and Data Analysis I (STA 304). The values in Table 1 shows that Advanced Calculus II (MAT 302) has 
the most widely spread out performance in the case of mathematics courses while Design and Analysis 
of Experiments (STA 305) has the most widely spread out performance in the case of the statistics 
courses. It is also observed that the maximum grade score was recorded in Introductory Analysis (MAT 
303) while the Minimum grade score was recorded in Advanced Calculus II (MAT 302). It can further be 
seen that the performance in the mathematics courses are relatively better compared to performance 
in the statistics courses. 
 
The data was also explored on both semester and subject bases using graphical representations as 
shown in Figures 1, 2, 3 and 4. Analyzing the performance by semester, it can be deduced from Figure 1 
that for the first semester courses, the mean grade of Probability Distributions and Research Methods 
are higher than that of the rest of the other courses especially in the case of Research Methods, while 
for the second semester (Figure 2), the mean grade of the courses are quite close to each other. Figure 
3 shows, as was observed above, that the performance in Research Methods (STA 399) is 
 
Table 1: Summary statistics of the data. 

Variable Code N Minimum 
(%) 

Maximum 
(%) 

Mean 
(%) 

Standard 
deviation (%) 

Advanced Calculus I MAT 301 258 21 92 63.19 11.946 
Introductory Analysis MAT 303 258 17 94 68.02 10.993 
Probability Distributions STA 301 258 26 87 58.23 10.970 
Statistical Methods I STA 303 258 35 86 63.21 10.563 
Research Methods  STA 399 258 45 89 72.09 8.179 
Advance Calculus II MAT 302 258 6 88 65.61 12.176 
Modern Algebra MAT 304 258 26 97 68.03 11.417 
Sampling Techniques & Survey Meth. STA 302 258 33 87 64.98 10.325 
Data Analysis I STA 304 258 38 85 64.94 8.423 
Design & Analysis of Experiment STA 305 258 21 90 65.09 11.463 
Source: Result from analysis of data, 2014.  

 
relatively higher as its approximating normal curve is shifted to the right relative to that of the other 
statistics courses. Also Figure 4 reveals that the performance in Modern Algebra (MAT 304) and 
Introductory Analysis (MAT 303) are higher than that of  Advanced Calculus I (MAT 301) and Advance 
Calculus II (MAT 302). 

 
3.02  CORRELATION ANALYSIS 
 
This section gives the result of the correlation analysis. The correlation matrix is a numerical evaluation 
of the relationships among the ten courses. Table 2 shows that there are some fairly high correlations 
among the courses. The lowest correlation (0.250) is between the performance in Advanced Calculus II 
(MAT 302) and Research Methods (STA 399). This may be due to the fact that Research Methods is not 
as numerate/algebraic as the other mathematics and statistics courses. The highest correlation (0.618) 
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is between performance in Sample Techniques and Survey Methods (STA 302) and Data Analysis I (STA 
304). This could be explained by the fact that they are both statistics courses. There is also an 
appreciable level of correlation (greater than 0.5) between Advanced Calculus 1 (MAT 301) and 
Probability Distribution (STA 301). Indeed there are altogether 13 pairs of courses with such 
correlations.   
 
Also Table 2 reveals that Research Methods have a weak correlation with both mathematics and other 
statistics courses. This may be due to the fact that, the content of Research Methods is not numerate 
or algebraic in nature -- it is unlike the other mathematics and statistics courses.  
 

3.03  EIGEN ANALYSIS OF THE CORRELATION MATRIX 
 
Table 3 shows the eigenvalues obtained from the Eigen analysis of the correlation matrix of the ten 
courses. The number of principal components produced is always equal to the number of the original 
variables, thus ten principal components were generated. The eigen-value-greater-than-one rule 
suggests that two principal components should be retained for further analysis or interpretation but 
three components (the first three) were retained because there appear to be another major change in 
the direction of the curve of the scree plot of Figure 5 at PC3. From Table 3, the first principal 
component, PC1, accounts for 49.2% of the total variance in the data. The second principal component 
accounts for 12.9% of the total variance in the data. Together, the first and second components account 
for 62.1% of the variance in the data. The third principal component accounts for 8.0% of the total 
variation in the data. 
 

Figure1: Performance in first semester Figure 2: Performance in second semester. 
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Figure 3: Performance in statistics courses Figure 4: Performance in mathematics Courses 
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The 3rd principal component together with the first and second principal components accounts for 70.1% 
of the total variance in the data, which is quite substantial as it is higher than the suggested 60% 
threshold (Hair et al., 2006). 
 
Table 2: Pearson correlation coefficients (correlation matrix). 

 
Courses 

Correlation between vectors of values 

MAT  
301 

MAT  
303 

STA  
301 

STA  
303 

STA  
399 

MAT  
302 

MAT  
304 

STA  
302 

STA 
304 

STA 
305 

MAT 301 1          
MAT 303 0.615 1         
STA 301 0.607 0.594 1        
STA 303 0.542 0.477 0.576 1       
STA 399 0.368 0.405 0.291 0.358 1      
MAT 302 0.423 0.389 0.396 0.362 0.250 1     
MAT 304 0.553 0.364 0.259 0.301 0.320 0.605 1    
STA 302 0.460 0.406 0.379 0.465 0.386 0.536 0.597 1   
STA 304 0.415 0.324 0.357 0.423 0.395 0.489 0.444 0.618 1  
STA 305 0.364 0.370 0.320 0.350 0.404 0.473 0.528 0.601 0.562 1 

Source: Result from analysis of data, 2014. 
 
Table 3: Eigenvalues of the principal components. 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Eigen Values 4.9163 1.2926 0.8019 0.6428 0.4934 0.4564 0.4098 0.3605 0.3306 0.2956 
Proportion 0.492 0.129 0.080 0.064 0.049 0.046 0.041 0.036 0.033 0.030 
Cummulative 0.492 0.621 0.701 0.765 0.815 0.860 0.901 0.937 0.970 1.00 

Source: Result from analysis of data, 2014. 
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Figure 5: Profile Plot (scree plot) 
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Table 4: The first three principal components and their eigenvalues. 

Variable PC1 PC2 PC3 

MAT 301 -0.330 0.363 -0.076 
MAT 303 -0.318 0.356 -0.024 
STA301 -0.307 0.447 0.207 
STA303 -0.312 0.308 0.009 
STA 399 -0.261 0.019 0.800 
MAT 302 -0.319 -0.233 -0.459 
MAT 304 -0.304 -0.404 -0.225 
STA 302 -0.355 -0.261 0.008 
STA304 -0.326 -0.242 0.149 
STA 305 -0.322 -0.320 0.166 
Eigenvalue 4.9163 1.2926 0.8019 
Proportion 0.492 0.129 0.080 
Cumulative 0.492 0.621 0.701 

Source: Result from analysis of data, 2014. 

 

3.04  INTERPRETATION OF THE FIRST PRINCIPAL COMPONENT, PC1 
 
Table 4 shows the eigenvectors (which provides the weights) of the first three principal components 
and their corresponding eigenvalues.  
 
3.4.1  Computation of Relative Score Index (RSI) 
 
Some of the weights of principal components are negative in sign and some are positive in sign. The 
pattern in the occurrence of the signs could have a bearing on the way a given principal component is 
interpreted. For PC1, all the weights are of the same sign, negative, and hardly any deduction can be 
made by way of interpretation relative to the scores of the course. Again some of the scores of PC1 are 
negative and some positive. While the scores of PC1 are interpretable relative to the original scores of 
the courses, the interpretation was facilitated by computing a measure that transforms the scores of 
PC1 into percentages, thereby eliminating the negative signs. The measure referred to as the Relative 
Score Index (RSI) (Nortey & Aguh, 2012) is given by  
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It expresses every score as a value between 0 and 100.  is the  ith RSI value corresponding to ith 

score. Si is the ith score and Smin and Smax are the respective minimum and maximum scores obtained for 
a principal component from the analysis. The Relative Score Index was computed based on the 
principal component scores estimated for each student. 
 
Table 5 shows the principal components scores/relative score index for PC1 and their corresponding 
ranks for the first 30 observations. A critical examination of the PC1 scores and the RSI values reveals 
that the first ranked RSI value has the most negative PC1 score and last ranked RSI value has the most 
positive PC1 score. Thus the first ranked student has the least component score of -5.30332 and has the 
best course scores or grades and the last ranked (258th) student has the highest component score of 
5.57678 and has the worse course scores or grades. 
 
High course scores are associated with a negative PC1 score and low course scores are associated with 
a positive PCI score. Thus the better the performance of a student, the more negative the PC1 score and 
the higher the RSI value, and the poorer the performance of a student the more positive the PC1 score 
and the lower the RSI value. A PC1 score value close to zero (0) is an indication of an average 
performance. The PC1 score closest to zero (0) is 0.02986 which corresponds to an RSI ranking of 144. 
This student obtained high marks in four (4) courses and performed just averagely in the other six (6) 
courses. For such students the RSI values is close to 50%. The above enumerated attributes of RSI lends 
it as a suitable alternative to the GPA which is currently used by the Department. 
   
Table 6 presents the classification of the performance of students based on the RSI values, using a 
criterion that divides the interval 0 – 100 into four equal parts, and Table 7 gives the number of student 
falling within each of the categories resulting from the classification presented in Table 6. From Table 7, 
thirty-two (32) students performed excellently, hundred and fifteen (115) had very good performance, 
seventy-seven (77) had good performance and thirty-four (34) students performed averagely.  
 

3.05  INTERPRETATION OF THE SECOND PRINCIPAL COMPONENTS, PC2 
 
It can be seen from Table 4 that the weights of the second principal component PC2 corresponding to 
first semester courses are positive and those for the second semester courses are negative. Thus the 
second principal component, PC2, serves to differentiate first semester courses from the second 
semester courses. For a positive PC2 score, the value of the scores for most of the first semester 
courses must not only be greater than their respective average scores in the semester but also greater 
than the scores achieved in the second semester courses. On the other hand, for a negative PC2 score, 
value of the scores of most of the second semester courses must not only be greater than their 
respective average scores in the semester but also substantially greater than the scores achieved in the 
first semester courses as the weights of second semester courses are lower than that of the first in 
magnitude. Thus, using the scores of PC2, a student can be classified as performing well in a given 
semester depending on the sign (negative or positive) of the student’s PC2 score. For instance, the 
highest PC2 score of 4.95636, which is for the 214th person, indicates that the student performed better 
in the first semester than in the second semester. The 202nd person has a PC2 score of -4.59136, which 
indicates that the student did better in the second semester than in the first semester. Also, a score 
closer to zero (0) indicates the student has similar levels of performance in both the first and second 
semesters. For example the component score of -0.01115, which is for the 221st person shows the 
student had comparable levels of performance in both the first and second semester.  
 
A critical look at both the original course scores and the PC2 scores suggests a classification criterion for 
categorizing the performance of students based on the values PC2. The classification criterion is shown 
in Table 8. A student with a component scores (S) less than negative one (S < -1) is considered as 
performing well in the second semester than in the first semester, while a student with a component 
score (S) greater than 1 (S > 1) is seen as performing well in the first semester than in the second 
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semester. A student whose component score (S) falls in the range of -1 ≤ S ≤ 1 is seen as having similar 
levels of performance in both semesters.  
 
Table 5: Distribution of Principal Component Score/Relative Score Index and their ranks for the first 30 
observations. 

OBS PC1 RSI RANK OF RSI 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

 

-3.32701 
-3.16666 
-0.79202 
-2.63511 
0.16440 
-0.09645 
-0.00380 
-1.07967 
-2.78535 
-3.91342 
-0.61101 
2.94548 
-0.21842 
-1.32983 
-1.16790 
-0.19201 
-0.43915 
-0.43100 
-0.16095 
-3.63991 
1.99770 
-1.12278 
-1.25772 
-0.72356 
-3.11170 
-1.74730 
-2.69458 
2.41450 
-1.00978 
-1.29128 

 

81.8355 
80.3618 
58.5363 
75.4763 
49.7457 
52.1432 
51.2917 
61.1801 
76.8572 
87.2253 
56.8726 
24.1845 
53.2643 
63.4793 
61.9910 
53.0215 
55.2930 
55.2181 
52.7361 
84.7115 
32.8957 
61.5763 
62.8165 
57.9070 
79.8566 
67.3164 
76.0229 
29.0649 
60.5377 
63.1250 

 

15 
17 

104 
31 

150 
137 
143 
90 
24 
8 

111 
229 
130 
72 
83 
131 
120 
122 
132 
11 

204 
87 
79 

108 
18 
51 
29 
214 
95 
76 

 Source: Result from Analysis of Data, 2014. 

 
Using the criteria set in Table 8, the number and corresponding percentage of students who would be 
considered as performing well in a particular semester is given in Table 9. 
 

3.06  INTERPRETATION OF THE THIRD PRINCIPAL COMPONENT, PC3 
 
The third principal component serves to indicate the subject (mathematics or statistics) in which a 
student has a better performance. This is evidenced by the fact that the weights corresponding to 
mathematics courses are all negative while those corresponding to the statistics courses are all positive 
(Table 4). 
 
Table 6: Classification criteria for students’ general performance. 

Relative Score Index Level of Performance 

75  ≤  S  ≤  100.00 
50  ≤  S  ≤  74.99 
25  ≤  S  ≤  49.99 
S  ≤  25 

Excellent 
Very Good 
Good 
Average 
 Source: Result from analysis of data, 2014. 
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Table 7: Classification of students overall performance. 

Performance No of Students Percentage (%) 

Excellent 
Very Good 
Good 
Average 
Total 

32 
115 
77 
34 

258 

12.40 
44.57 
29.85 
13.18 

100.00 
Source: Result from analysis of data, 2014. 
 
Table 8: Classification criteria for students based on semester performance. 

Component Score Level of Performance 
S  >  1 
S  <  -1 
-1  ≤  S  ≤  1 

High in First semester 
High in Second semester 
The similar levels of performance in both semesters 

Source: Result from analysis of data, 2014. 
 
Table 9: Classification criteria of performance of students by semester. 

Performance No of Students Percentage (%) 

Better in First Semester 
Better in Second Semester 
Similar levels of performance in both 
semesters 
Total 

38 
39 
181 

 
258 

14.7 
15.1 
70.2 

 
100 

Source: Result from analysis of data, 2014.  

 
The performance in statistics is better than that in mathematics if the PC3 score is positive, while for 
 a negative PC3 score, the performance in mathematics is better than that in statistics.  
 
For instance, the 108th person obtained the least PC3 score of -2.21426 denoting a better performance in 
mathematics than in statistics. Also the 52nd person has the highest PC3 score of 2.74865 and represents 
a good performance in statistics than in mathematics. A PC3 value close to zero (0) reflects a situation 
where the performances in the mathematics courses are on par with those of the statistics courses. For 
example, 147th person has PC3 score of -0.02001. This student performed well in both the statistics and 
the mathematics courses. Thus, using PC3, a student can be classified as mathematics or statistics 
inclined or having comparable levels of performance in both mathematics and statistics courses. 
 
Table 10: Classification criterion for students based on subject performance. 

Component Score Level of Performance 

S < -1  
S >1 
-1 ≤ S ≤ 1 

Mathematics 
Statistics 
The similar levels of performance in Mathematics 
and Statistics 
 
 

Source: Result from analysis of data, 2014. 
 
Table 11: Classification of student’s performance by subjects. 

Performance No of Students Percentage (%) 

Mathematics 
Statistics 
Mathematics and Statistics 
Total 

34 
36 
188 
258 

13.1 
14.0 
72.9 
100 

Source: Result from analysis of data, 2014. 

 
A critical examination of both the scores for original courses and the corresponding PC3 scores 
suggests the classification criteria given in Table 10. A students with a PC3 score (S) less than negative 
one (S < -1) is deemed to be Mathematics inclined while a student with component score (S) greater 
than one (S > 1) is deemed as Statistics inclined. A student whose PC3 score (S) falls into the range 



 
Principal component analysis of students... 
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 -1 ≤ S ≤ 1 is seen to perform at comparable levels in both Mathematics and Statistics courses. Thus using 
the criteria set in Table 10, the number and corresponding percentage of students who could be 
considered as performing well in either of the two subjects areas or performing at similar levels in both 
subjects are as given in Table 11. 
 

4.0  CONCLUSION 
 
The study sought to find an objective basis for assessing students’ performance in the Department of 
Mathematics and Statistics of a public higher institution in Ghana. The multivariate tool of Principal 
Component Analysis proved useful in this regard. The first three principal components were retained 
for interpretational purposes.  The study established that the overall performance of students can be 
assessed using RSI, a derivative of the first principal component PC1, which is a weighted sum of all 
courses offered. Going by the values of RSI, and dividing the interval 0 – 100 into four equal parts, the 
performances of the students were categorized as Excellent (32), Very Good (115), Good (77) and 
Average (34). It was also found that one can determine the semester, first or second, in which a 
student did relatively better by using the scores of the second principal component, PC2. It was found 
that 38 students performed relatively better in the first semester, 39 students performed relatively 
better in the second semester and 181 had comparable levels of performance in both semesters. The 
third principal component, PC3, was found to be useful in determining which subject area, mathematics 
or statistics, a student’s academic strength lie.  The numbers of students suitable for each of the 
subject areas of Mathematics, Statistics and the double major of Mathematics and Statistics, going by 
the values of PC3, are 34, 36 and 118 respectively.  
 
We conclude from the results that most students perform at comparable levels in both semesters (one 
and two) and in the two subject areas of mathematics and statistics, with a few doing relatively better 
in either of the semesters or in either of the subject areas. The Department could use the foregoing 
findings to guide the students in making the choice as to which subject area to major in at level 400, the 
final year. Also RSI could replace GPA as it does not suffer from the weakness of assigning the same 
value to different levels of performance as does GPA some times. The Department could pilot RSI 
alongside GPA for about two (2) years to fully appreciate its behaviour and then replace GPA by RSI 
once it has been found to be wholesome. Barring any unforeseen problems with RSI, the replacement 
of GPA with RSI will encourage the student to put up their best performance as it will reflect the true 
performance of the students.  
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APPENDIX A 
 
Table A1: Grading system for examination scores. 

Exams score Letter grade Numerical equivalent 

80-100 A 4.0 
75-79 B+ 3.5 
70-74 B 3.0 
65-69 C+ 2.5 
60-64 C 2.0 
55-59 D+ 1.5 
50-54 D 1.0 
<50 E 0.0 

 
 
Table A2: Example on GPA computation for Student 1 and Student 2. 

Student 1 Student 2 

 Score  Credit  Score Credit 
MM 60 3 MM 64 3 
EM 71 2 EM 73 2 
TM 55 3 TM 59 3 

 

 
 

            =  
 
            = 2.06 
 

 

 
 

            =  
 
            = 2.06 
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