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Historical Data in the Context of Risk Prediction 
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Available Online January 2014 An important element of a successful prediction of the future behavior 
of financial instruments is a thorough analysis of possible 
determinants that effect the final estimates of the prognostic models. 
In the case of VaR models, we may include here specified values of 
significance levels or assumed smoothing constant. Also, an important 
element is the number of historical observations that should be taken 
into account in order to estimate the scale of the risk. In the article, 
therefore, a study of the effectiveness of certain value-at-risk models in 
the context of historical data had been carried out. Thus, an attempt to 
assess the impact of the amount of historical data on the 
effectiveness of the VaR  indications had been made.   
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1. Introduction

Assuming that predicting the future bothers many since the dawn of history, it is worth considering the 
issue of possible factors which in greater or lesser scope have an impact on the effectiveness of forecasting 
the future states. Determinants of having a significant impact on the accuracy of the forecasts are a vital 
element in the whole process of scale estimation risk. The lack of respect for them may lead to inaccurate 
estimates in spite of well-chosen models.  

A good method of risk measurement is commonly known as Value at Risk. It is a measure, which with in 
advance assumed probability, indicates on the scale of potential losses within a specific period of time. Thus, 
this measure gives a direct answer to the issue of the scale of the threats that may take place e.g. the next 
day. The rest depends only on the investor and the scale of its aversion to risk. However, he gets specific 
information about the dimension of the possible risks and taking the final investment decision depends only 
on his personal predispositions, social, cognitive and emotional tendencies.   

However, it should be remembered that we are dealing with a wide range of methods for estimating  VaR 
both to the concepts i.e., parametric methods, nonparametric or semiparametric and different concepts 
within the group, such as a GED class model or even GARCH. Also important is the issue of modeling the 
random interference with the help of specific distributions, like normal distribution or t-Student. Even in a 
group of simulation methods we are dealing with two types of models such as Monte Carlo simulation and 
historical simulation which make a great deal of different concepts of value-at-risk estimates. 

The purpose of this article was not only the fact of presenting different approaches to the modeling VaR, as 
it has been made in the literature before, but to pay attention to the determinants of the models mentioned 
above.   

In order to present a full examination of the flexibility of value-at-risk the listing companies included in the 
WIG20 index of the Stock Exchange in Warsaw in the period from January 2010 to December 2012 were 
taken into consideration which is a period of three years and, therefore, nearly 800 trading days. It seems 
that such a period of time is sufficient in order to make an objective assessment of the effectiveness of the 
VaR estimates by so called backtesting.  
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2. Value-at-Risk – historical background 
The major blooming period of VaR method is observed in the 1990s of the 20th century. Its history dates 
back to the mid-1980s. Initially, the use of value-at-risk was associated with the activities of  Bankers Trust 
and JP Morgan, but it soon became apparent that this method is very useful.  

In the 80s  a whole range of new assets, whose level of risk was hard to assess, appeared in the financial 
markets. First of all, because their trade on the open market was limited. Secondly, a lot of hybrid 
organizations (insurance and investment) emitting pretty new, unknown so far financial instruments, 
appeared in the market.  

Gaining through years the experience in the assessment of the particular type of risk was no longer 
sufficient. The rate of forming new types of financial instruments exclude the possibility of limiting the 
specialization in one narrow area of financial markets. It forced the creation of a single tool to measure the 
risk, which would provide the level of risk of heterogeneous assets in easily comparable units.  

The pioneer of the VaR method became JP Morgan. For several years the method was refining (VaR was 
mainly based on historical observations of specific portfolios of assets, which had to take at least several 
years of backtesting). In the early 1990s, the VaR method was ready. There had been created the method 
which reported the overall level of risk, regardless of the types of assets in the commonly understood units.    
The principle of functioning of the VaR was simple: if the portfolio of assets brought more profits with less 
VaR risk level, its volume should have been increased. If the particular unit made more profit at the same 
VaR level the involvement in the unit should have been increased. If the broker generated higher profits at 
the same level of  VaR, he deserved respectively a larger bonus. 

3. Determinants of VaR models

One of important elements deciding on the effectiveness of Value at Risk models is widely understood 
variability. To build a reliable Value at Risk model, it is important to understand the variability and the 
behavior of its models. The right choice of the model variability is therefore one of the most important 
factors determining the efficiency of the chosen VaR model. It depends on it whether the model that we take 
into consideration will not underestimate the risk, or the values it generates, far exceed the legal limits. This 
issue is a consequential problem and a special attention should be paid to it, as the models presented in this 
work are based on various methods of determining variability. 

Basically, the VaR methods can be divided into two groups i.e., simulation methods and parametric ones. 
The first of these groups is so characteristic that it does not accept any assumptions about the form of the 
subject’s distribution of the rank, and also the methods of variability output use no equations. Variability 
index sets a price change corresponding to quantile equal to the required level of confidence. Percentile 
methods, as they are often used to be called, are preferred by those who believe that the assumption of 
normality of the distribution is a weak point of the overall VaR model. 

However, an important drawback of these methods is that they assume that the variability is constant at any 
given time, and thus these models assign equal weight to each daily return. It is widely accepted, however, 
such variability in the financial world are not constant, but quite the opposite, almost constantly change. In 
fact, the financial markets have irregular but often sharp changes in variability which means after the period 
of low variability there can be observed the period of high one (Best, 2000).  

Such an approach implies the need to use some other models, and the explanation of it is the phenomenon 
of ‘the grouping of income from financial assets’, based on the fact that the economic information 
immediately affect the income of the day, and to a lesser extent on the income of the following days i.e., the 
impact spread in a relatively short period of time. The presence of autocorrelation means that the income 
from the last period provide more information about the current level of variability than those from the 
earlier period. It is suggested that in order to obtain the model of variability that accurately measures the 
current level, it would be advisable to assign a higher weight to the previous income.  

So as it takes the second group of models, which can include analytical models, which describe in a different 
way ‘the behavior’ of financial instruments in the investment portfolio.  
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Basically, we can distinguish here the models developed by the group of J.P. Morgan, based on the variability 
models created with the usage of exponentially weighted moving average – EWMA (Crowder, 1987) and 
class models GARCH – generalized autoregressive conditional heteroskedastic (Bollersev, 1986), (Bollersev, 
1987). EWMA is an important element of  Value at Risk model known as RiskMetrics™. That is an essential 
subject of further consideration.   
 
The equations to derive mentioned variabilities are described as: 
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While in the EWMA model parameters are easy to estimate, in case of the class models GARCH – there is a 
variety of strains – and their designation is not always an easy process. Their estimation requires 
maximizing of the reliability function. Here, the presence of extreme price changes in the rank of data can 
cause problems for the maximum reliability function – used in this case to calculate parameters – 
manifested in the lack of convergence.  
 
The major difference between the mentioned EWMA model and the class models GARCH is the fact that the 
second group of models corresponds even more aggressively to changes in time rank than the EWMA 
model. Furthermore, interesting and useful feature of GARCH models seems to be the fact that they cover 
the phenomenon of ‘return to the mean’. This is mainly connected with the fact that the value of certain 
financial assets fluctuates around a long-term value. 
 
Another important fact which should be considered when determining the VaR is a number of historical 
observations that should be taken into account. We should think how far shall we look into the past in order 
to predict with the greatest accuracy the possible negative effects of market changes. Beyond the 
significance level, it is therefore the value in a large extent responsible for the VaR estimates. There is a need 
to determine the minimum number of observations that is necessary to estimate the estimator of the 
standard deviation for daily logarithmic returns of the process of the examined instrument. Using in this 
respect the relationship developed by Risk Metrics™ 
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we can attempt to designate the effective number of historical observations.  
It is generated in a way that the sum of weights for finite moving average (equal to 1 – λn) accounted for a 
relatively large percentage: 1 – γtol from the sum of weights for a theoretical infinite moving average (which 
is 1), where: 0 < γtol < 1 – is a sufficiently small tolerance level. We obtain the relationship binding the 
smoothing constant, the tolerance level and the required number of historical observations: 
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n γλ −=− ,                                                               (4) 

 
The equation (4) implies the following formula enabling to determine the required number of historical 
observations depending on the established tolerance level and adopted the smoothing constant (Jangwoo & 
Mina, 2001), (Pisula & Pisula, 2001): 
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Therefore, starting from the assumption that the smoothing constant λ adopted by RiskMetrics™ for daily 
data is 0,97 and γtol is set at the level of 0,01 so n = 151 historical observations is the optimal number 
allowing to generate effectively the value-at-risk. Thus, in this case we need to move back more than six and 
a half months when it comes to stock listing. It must therefore be admitted that it is quite a lot as far as 
stepping back in history is concerned.  
 
Figure 1 shows the accurate data in this context depending on the adopted smoothing constant. 
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Figure 1. The number of historical observations as the smoothing function λ. 
Source: own study based upon RiskGrades™ Technical Document, Second edition, February 2001. 
 
Besides, another important factor determining the degree of VaR estimates is the level of significance α, that 
should be assumed as far as its estimation is concerned. The change in the significance level definitely affect 
the Value at Risk. Increasing the value of α causes the reduction at the level of value-at-risk which is 
somewhat intuitive. It should be noted that not all the concepts of determining the VaR respond equally to 
changes in the level of significance. There are some methods that are in this respect more or less flexible 
(Mentel, 2011). However, this is not the study subject of this publication. 
 
 
4. The form of analytical models 

 
Assuming that the VaR methodology is essentially delimited into two subgroups, it is worth quoting the 
approaches to maximum estimates of potential losses taken into consideration in this publication. 
 
Thus, we are dealing with the concept of historical simulation, in which the actual data is used, which 
reflects much better the behavior of the market rather than other classical methods. The main advantage of 
this method is the fact that it is a non-parametric method. This means that on one hand, there are no 
limitations resulting from the need of adopting the assumptions of normality, on the other hand, estimation 
of some parameters is avoided (such as mean or standard variation) based on historical data (Jajuga, 2000). 
Using historical model we must collect a large series of data. The higher its number is, the greater the 
accuracy. However, very distant data is often out of date, and not as much important as the less distant one. 
Sometimes gathering the sufficient number of data is simply impossible and the use of this method is then 
limited.  
 
This method of calculating VaR is sensitive to extreme rates of return included in the distribution. As a 
result, the size of Value at Risk changes in a ‘stepped’ way and the size of risk is often under or 
overestimated.   
 
Monte Carlo simulation method, in turn, is based on the hypothetical stochastic model that describes the 
evolution of the price of financial instruments. The essence of the stochastic processes is that it is not 
possible to predict the value of the process, we can only determine the probability of the given value to be 
reached. The value of the process is only dependent on time and the previous value of the process. 
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In the Monte Carlo method a hypothetical model, that describes the mechanism of price formation (or rate 
of returns) of financial instrument, is assumed. It is often assumed that this process is a geometric Brownian 
motion. Using as a basis this or other models (model of ‘returning to mean’ (Risk Metrics Technical 
Document, 1996), the jump and diffusion model (RiskMetrics Monitor, 1996), etc.), a lot of observations of 
prices of financial instruments are being generated. In this way, a distribution of the rate of return of the 
financial instrument is received. Determination of the quantile of this distribution allows directly to 
determine VaR. The process parameters are most frequently estimated on the basis of the past data (Jajuga, 
1999). 
 
Considering parametric methods in estimation there had been chosen a several models to compare a few 
models especially important because of their practical applications, and which had been introduced and 
successfully used by analysts and financial engineers gathered around the RiskMetrics™: 
 
Risk Metrics Drift Model with the random modeled interference with the usage of the normal distributions 
(Risk Metrics Technical Document, 1996). 
 
In this model it is assumed that logarithmic returns of stock prices are generated according to the following 
process: 
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In this model, so called conditional variance for the daily returns of stock prices (in the practical assumption 
that their average value is zero) is calculated as infinite moving average with exponential weights: 
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For returns with longer time horizon (T>0) we use (practical for logarithmic returns) scaling of the 
variance in the length of this horizon (Pisula & Pisula, 2002). 
 
As it was mentioned above, RiskMetrics™ uses in their analysis universal smoothing constant λ=0,97 for 
daily returns. In subsequent calculations there will be used, however, individual smoothing constant 
calculated separately for each of the analyzed time rank.  
 
VaR boundaries estimated on the basis of the above model (on the assumed level of significance α) for daily 
time horizon for returns and share prices will be respectively: 
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where:  
    2/),1,0( ατ N , 2/1),1,0( ατ −N  - the corresponding quantile of a given rank in a normal distribution. 

 
The corresponding model parameters (λ and µ) are determined using the method of maximum reliability. 
 
Model RiskMetrics t-Student with random interferences modeled by t-Student distribution (Risk Metrics 
Technical Document, 1996) (RiskMetrics Monitor, 1996). 
In this model it is assumed that the returns are generated according to the following process:  
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VaR boundaries estimated on the basis of the above model (on the assumed level of significance α) for daily 
time horizon for the returns and share prices are respectively: 
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where:  

2/),,1,0( αντ t , 2/1),,1,0( αντ −t  - the corresponding quantile of  a given rank in t-Student distribution. 

Risk Metrics Normal Mixture Model with random interference modeled by a ‘mixture’ of normal 
distributions (Risk Metrics Technical Document, 1996) (RiskMetrics Monitor, 1996). 
 
In this model it is assumed that the returns are generated according to the following process which is so 
called the ‘mixture of normal distributions’: 

tttttttr ,2,1 )1( εδσεδσ ⋅−⋅+⋅⋅= ,         (10) 

where:  

    )1,0(:);,(: ,2
2

11,1 NN tt εσµε ; pPpP ttt −====∈ 1)0(;)1(};1,0{ δδδ . 

 

-3 -2 -1 0 1 2 3 
0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 
N(0,1)  

NormMix(0,2,0,1,0.2)  

 
Figure 2. The chart of the density function for a mixture of normal distributions with different values of  

distribution parameters.   
Source: Mentel G., Value at Risk w warunkach polskiego rynku kapitałowego, Wydawnictwo CeDeWu, 

Warszawa 2011. 

If 0=tδ , that occurs with the probability „1-p”, to )1,0(:~ Nrr
t

t
t σ
=  - then the returns are generated as 

in the classical model of RiskMetrics™ (without the drift: µ=0). 
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VaR boundaries estimated on the basis of the above model  (on the assumed level of significance α) for daily 
time horizon will be appropriate for the returns and share prices in the form of: 
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where:  
    2/),,1,0,,( 11 ασµτ pNormMix , 2/1),,1,0,,( 11 ασµτ −pNormMix  - the corresponding quantile of a given rank in the 

assumed mixture of normal distributions. 
 
RiskMetrics GED Model with the random interferences modeled by general error distribution (General 
Error Distribution – GED) (Risk Metrics Technical Document, 1996) (RiskMetrics Monitor, 1996). 
In this model, it is assumed that the returns are generated according to the following process: 
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The density function for the general error distribution ),,( νσµGED  with the parameters: location µ , 
scale σ  and shape ν  is in the form of: 
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, Γ  - gamma function. 

GED distribution is often used in practice as it has so called ‘fat tails’. This means that the forecasts 
constructed on the base of GED distribution capture the extreme observations easier (see Figure 3). If the 
shape parameter 2=ν , then GED distribution is a normal distribution ),( σµN .  
VaR boundaries estimated on the basis of the above model (on the assumed level of significance α) for daily 
time horizon will be appropriate for the returns and share prices in the form of: 

tGEDttGED r στµστµ αναν ⋅+≤≤⋅+ − 2/1),,1,0(2/),,1,0(         (15) 
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where:  
    2/),,1,0( αντGED , 2/1),,1,0( αντ −GED  - the corresponding quantile of the given rank in the GED 

distribution. 
 



Historical Data in the Context of Risk Prediction 
Grzegorz Mentel/Jacek Brożyna 

 

55 | P a g e  

 

-3 -2 -1 0 1 2 3 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

GED(0,1,1)  

GED(0,1,1.5)  

GED(0,1,2)  <=> N(0,1)  

 
Figure 3. The chart of density function of GED distribution for different parameters. 
Source: Pisula T., Pisula J., Możliwość efektywnego przewidywania ryzyka zmian kursów akcji spółek 

notowanych na GPW, Rynek Terminowy nr 17/3/02. 
 
 
5. The empirical analysis 

 
While assessing the basic estimated value of the Value at Risk in the context of the impact of the amount of 
the historical observations on the effectiveness of VaR indications, several levels of historical data were 
used. The received values of potential losses were determined on the basis of the study from 50 to 200 days 
back, at intervals of 25 days, which gave seven levels of the past listing values. All calculations were carried 
out for α=0.05, since the VaR sensitivity testing on the change of significance levels were carried out in the 
pages of a separate publication (Mentel, 2011). 
 
All necessary parameters of models taken into consideration for the estimation, were estimated with the 
usage of maximum reliability method. As to the calculations, they were made at the sample of twenty 
companies listed on the Warsaw Stock Exchange, as it was mentioned in the introduction, which seems to be 
a fairly large group of entrants when it comes to carrying out any inferences.   
 
In the studies, the class models GARCH (1,1) were omitted as only for a small group of entrants it was 
possible to estimate the parameters of the model. The problems concerned the lack of convergence as far as 
the mentioned above function of maximum reliability is concerned. 
 
Therefore, focusing strictly on the analysis of the received results we have to highlight the fact of significant 
deviation of RiskMetrics t-Student indications where the random interferences were modeled precisely by t-
Student distribution (Fig. 4). This is mainly due to the fact that such distribution handles much better in the 
event of extreme observations, and therefore the key factors are here the ‘fat tails’. Similar observations had 
been noted earlier at the stage of the study of the influence of the significance level on the VaR estimates, 
where in the case of analysis it was possible to use the class model GARCH (Mentel, 2011). There, the 
general guidelines for the discussed distribution were significantly better than for the random interferences 
modeled by normal distribution. It should be emphasized, however, that the remaining group of methods in 
case of individual entrants is also doing well. Averaging the results of the estimates for the entire study 
sample we get the results that can be observed in the mentioned Figure 4. In addition, it can be said that the 
simulation models are doing the worst. 
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Figure 4. The average value of the percentage of exceedances beyond the VaR values for the different 

number of historical observations taken to their estimation (α=0,05). 
Source: own study. 
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Table 1. The values of  the smoothing constant λ in the section of models. 
 Risk Metrics 

GED 
Risk Metrics 
Normal 

RiskMetrics    t-
Student 

Risk Metrics  
Normal Mixture 

AssecoPol 1,002090 0,954389 0,944217 0,918641 
Bank Handlowy 0,948311 0,954373 0,946680 0,930069 
Bogdanka 1,001220 1,002350 0,963477 0,851728 
Boryszew 0,994859 0,990841 0,782848 0,736877 
BRE Bank 0,922980 0,914552 0,927885 0,900436 
GTC 0,967670 0,978482 0,963360 0,957721 
Jastrzębska Spółka Węglowa 0,925009 0,927996 0,919487 0,866749 
Kernel 1,004840 0,965543 0,944696 0,924287 
KGHM 0,940196 1,001530 0,939152 0,935228 
Lotos 0,956758 0,955977 0,957096 0,948923 
Pekao 0,944258 0,944536 0,945461 0,940240 
PGE 0,923163 0,926529 0,920565 0,907382 
PGNiG 0,944867 0,935948 0,945786 0,907585 
PKN Orlen 0,955564 0,954468 0,954791 0,935015 
PKO BP* 0,940204 0,937841 0,940392  
PZU 0,955083 0,951695 0,958898 0,927072 
Synthos 0,957255 0,938880 0,959520 0,894264 
Tauron Polska Energia 0,914141 0,935243 0,885797 0,839022 
TP S.A.* 0,986180 1,001980 0,980830  
TVN 0,952498 0,938435 0,961627 0,931236 
Mean 0,956857 0,955579 0,937128 0,902915 

* In the case of  PKO BP and TP S.A. it was impossible to estimate the parameters for RiskMetrics 
NormalMixture model. 
Source: own study. 
 
Departing from the analysis of the methods used, it should be noted that the best results were obtained for a 
hundred of historical observations taken for analysis. Slightly different indications were also obtained for 
n=125 days. Thereby, increasing the amount of historical observations beyond the threshold of 125 days 
entails only the deterioration of the general indications. Excluding from the analysis the simulation 
methods, equally good results were obtained for 50 days. For some entrants for such value of past data the 
results were better than in the case of  withdrawal of 100 days (Fig. 5).  
 
It should be remembered that all the calculations were based on individual smoothing constant and not as it 
is rigidly recommended by RiskMetrics™. The values of λ are presented in the Table 1. 
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Figure 5. The value of the percentage of exceedances beyond the VaR values for RiskMetris t-Student model 

in the section of analyzed advantages  (α=0,05). 
Source: own study. 
 
 
6. Conclusions 

 
Analyzing the Value at Risk, we should pursue to the fullest possible knowledge of the method itself, but also 
keep in mind the need to explore the use of such a method. The lack of understanding of the basic structural 
building of VaR model is one of the main reasons for the possible negative results of its use. This state of 
affairs is the major drawback of this method. Therefore, all the work which aim to explore its secrets, by 
analyzing the factors that have a direct influence on it are becoming extremely important. 
 
The essential element of methodology is so called the distribution model, which should faithfully reflect the 
behavior of the market, causing thereby that the VaR is flexible and responsive to changing market 
conditions. It is worth emphasizing that as far as the market is concerned, the most interesting things 
happen at the end of the distributions of variables which is contrary to the common assumption of 
normality. The biggest profits and losses do not produce the normal days but the extreme ones (Taleb, 
2007). Hence, better results are obtained when the random interferences are modeled even by the 
distribution of  t-Student.  
 
As far as the significance levels are concerned, the most frequently is used the value of 0,05 or 
recommended by the Basel Committee on Banking Supervision 0,01. On the basis of personal experience, it 
seems that the use of that first gives in this case the best results.  
 
In contrast, taking into account the number of historical observations that must be considered to have a 
good estimate of the size of potential losses, it seems that the relationship developed by RiskMetrics™ gives 
the good basics. For daily data, looking into the past beyond the level of a hundred days seems to make no 
sense. Thus, a wider historical VaR is not a panacea for the ills of valuation methods. Artificial increasing of 
historical data does not translate into an improvement in the efficiency of the method itself but quite the 
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opposite. It is therefore confirmed that the most important things while predicting the future are the recent 
events and the process of reversing the past entails the phenomenon of ageing information. The above 
mentioned process runs exponentially. In addition, we need to be skeptical in the case of all the events from 
the past. Even if they are important for what is soon likely to happen, it will rather not repeat with the same 
force as it had already taken place. Due to the historicity of the market processes, nothing happens twice as 
far as markets are concerned, or at least it does not happen in the same way. Thus, so called stress testing, 
used as a supplement to the VaR in order to protect against the extreme situations on the market, is not a 
panacea to improve any shortcomings of the Value at Risk methodology. 
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