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Abstract 

This is an attempt to study the volatility structure of the tanker freight market and its exposure to 
market shocks. Therefore, we introduce a two state regime to investigate the possibility of two 
different volatility structures in shipping tanker freight markets. Empirical evidence is found that in 
general terms, shipping tanker freight returns, shift between two regimes, a high volatility regime and 
a low volatility regime and that market shocks in general increase the volatility of freight returns and 
has a lasting effect. In regards to measuring freight risk, it seams that semi-parametric approaches are 
appropriate methods for measuring level of risk exposure for shipping freight markets. 

Keywords: Value at Risk; GARCH, semi-parametric, Markov switching and freight volatility. 

 

1.0 Introduction 
Analysing freight volatilities for tanker freight returns is a major issue for participants in freight 
markets. The understanding of freight volatility measures is vital in improving ship-owners 
profitability, and reducing financial risk exposure for investors and shipping portfolio managers. 
Furthermore, the vast and growing shipping derivative markets provide the necessary hedging tools 
for ship-owners and charterers to manage their freight risk exposures, provided those exposures are 
fully-understood. 
The main focus of this paper is to measure level of risk exposure in the tanker spot freight markets by 
examining the volatility structure of five major tanker routes. This is performed using a non-
parametric and a parametric approach based on a GARCH model structure combined with an extreme 
value approach to measure conditional volatility. We also attempt to capture sensitivity to market 
shocks, by decomposing market shock coefficient parameter, of the conditional volatility measure, to 
positive and negative components. In our analysis we come across clear evidence of clusters in daily 
freight returns, as others have done. Therefore, we introduce a two-state regime markov-switching 
framework to investigate the possibility of two different volatility structures in shipping tanker freight 
markets. The results are profound. 
 
The price movements in this market are taken from the Baltic Dirty Tanker Index (BDTI), which is 
published daily by the Baltic Exchange. This index represents movements of freight prices for 



Measuring level of risk exposure in tanker shipping freight markets 
Wessam  m. T.  Abouarghoub/Iris Biefang-frisancho mariscal  

 

Page | 21  
 

transporting mainly crude oil on different voyage routes, and these prices are quoted in a point of 
scale method known as Worldscale1 For more details see Amir Alizadeh and Nikos Nomikos (2008), 
and also, Manolis Kavussanos and Ilias Visvikis (2006).  
 
One widely-used tool for the measurement of risk exposure is Value-at-Risk (VaR). VaR methods for 
traditional financial markets are well documented in Dowd (1998), Jorion (2000), Holton (2003), 
Manganelli and Engle (2004) and Engle (1993), whilst energy VaR is detailed in Clewlow and Strickland 
(2000) and Duffie, Gray and Hoang (1998). A general introduction of VaR for shipping markets can be 
found in Alizadeh and Nomikos (2008). Angelidis and Skiadopolous (2008), attempt to investigate risks 
in shipping freights returns using a VaR approach, where they conclude that the simplest non-
parametric models should be used to measure market risk. A similar investigation of the volatility of 
freight returns in the dry bulk shipping markets was conducted by Jing, Marlow and Hui (2008). They 
find that asymmetric characteristics are distinct for different vessel sizes and market conditions. An 
interesting paper in the shipping literature by Kavussanos and Dimitrakopoulos (2007), investigates 
the crucial issue of tanker market risk measurement, by employing an Extreme Value concept and a 
Filtered Historical Simulation approach. They conclude that Extreme Value and Filtered Historical 
Simulation yield accurate daily risk forecasts and are the best models for short term daily risk 
forecasts. 
 
A recent paper presented at the annual IAME in Copenhagen by Nomikos, Alizadeh and Dellen (2009) 
investigated the volatility of shipping freight rates using a FIGARCH model structure, for measuring 
volatility for tanker and bulk freight rates. They compared their model for calculating VaR against 
other conditional volatility structures such as SGARCH and IGARCH. They concluded that different 
models are suitable for different size of vessels regardless of trade. This, according to the authors, is 
an indication of some form of size effect where smaller vessels illustrate more persistence in volatility. 
They also find strong evidence of fractional integration in freight rate volatility. 
 
More recently still, in the pages of this journal, Alizadeh and Nomikos (2011) tested the hypothesis 
that spot and time-charter shipping rates are related through the expectations hypothesis of the term 
structure, investigating the relationship between the dynamics of these term structures and time-
varying volatility of shipping freights rates using a EGARCH-X framework 

VaR measurement is based on the volatility of the portfolio in question. The volatility of the shipping 
freight rates has always been an issue of great importance for shipping market participants. 
Therefore, this paper adopts models that are capable of dealing with volatility (standard deviation) of 
the time series. Such models are the GARCH-family, which are presented and analysed in a later 
section. An important method for overcoming VaR shortcomings lies in extreme value theory (EVT) 
measurement, which specifically targets extreme returns. Focusing on the left hand tail rather than 
the entire distribution, by definition, VaR-EVT measures the economic impact of rare events. 
Numerous applications of VaR-EVT have been implemented in financial literature. Embechts, 

                                                 
1 WorldwideTanker Nominal Freight Scale: the worldscale association in London calculates the cost 
(break-even) of    
    performing a round trip voyage between any two ports. Based on a standard vessel specification, 
calculations for  
    transportation costs include assumption for bunker prices, port disbursements, canal dues and other 
fixed costs.  
    Freight prices are measured in US dollars per metric ton, for each route, which is referred to as the 
flat rate. 
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Klüppelberg, and Mikosh (1997) and Reiss and Thomas (2001) provide a comprehensive overview of 
EVT as a risk management tool. 
 
An important contribution of this paper is the proposal of a two state Markov regime-switching 
conditional variance procedure; as far as we are aware this is the first attempt to investigate the 
possibility of freight volatility for the tanker market switching between, high and low volatility 
regimes. Originally introduced by Hamilton (1988, 1989) and since then, there have been a wide range 
of contributions, including Engle and Hamilton (1990), Hamilton and Susmel (1994), Hamilton and Lin 
(1996), and Gray (1996). Similar, to financial returns, the evidence of volatility clustering is apparent 
in freight returns. Thus, assuming that conditional variance switches between two state regimes, one 
state of high volatility and another of low volatility, is an appropriate assumption. In other words, if 
freight returns are subject to shifts between two state regimes, the conditional variance would 
change between two sets of estimated parameters. 
 
This paper attempts to establish a framework, in which, to measure the level of risk exposure for 
participants in tanker spot freight markets, through the use of models that combine the ability to 
capture conditional heteroscedasticity in the data through a GARCH framework, while at the same 
time modelling the extreme tail behaviour through standardized returns and an EVT-based method. 
There are several steps. Firstly, using a parametric approach through adopting a symmetric GARCH 
model, asymmetric GARCH model and a Student-t AGARCH to accommodate autoregression in 
conditional volatility, aims to examine the sensitivity of freight volatility to market shocks and their 
lasting effects. Secondly, examining the performance of different GARCH models in computing VaR, 
aims to investigate the level of risk exposure in tanker freight markets. Thirdly, introducing an EVT-
based on the AGARCH-t(d) model and it’s effectiveness in forecasting VaR aims to investigate the 
exposure to extreme losses in tanker freight markets. Fourthly, evaluating all models performances 
through back testing and misspecification tests enables us to compare the closeness of measures 
produced by the different models and their corresponding actual returns. Fifthly, introducing a two 
state regime concept, allows us to investigate the possibility of tanker freight volatility’s switching 
between high and low states and to identify the implications for operation managers and trading 
strategies. Finally, we examine the strength of a semi-parametric method in modelling freight 
volatility in comparison to non-parametric and parametric methods.  
 
The remainder of the paper is structured as follows. Section 2 documents the methodology used in 
this study, which includes: value at risk methodology, non-parametric approach, parametric 
approach, semi-parametric approach, extreme value theory, Markov-switching, back-testing and 
misspecification tests. Section 3 is concerned with data and empirical analysis. Section 4 concludes 
the paper. 

2.0 Methodology 

2.1. Value at Risk Methodology 
Value at risk refers to the maximum amount in money terms that an investor is likely to lose over 
some period of time, with a specific confidence level (1-α). Value at risk is always reported in positive 
values, although it is a loss. One day ahead VaR is calculated in the form; 

𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡+1
1−𝛼𝛼 = 𝑆𝑆𝑆𝑆𝑡𝑡+1 + 𝑍𝑍𝛼𝛼                                                        (2.1) 

Where SD is the standard deviation for daily returns and Zα is the critical z-value for a given 
significance level α for a normal distribution of daily returns. VaR is computed in two steps. Firstly, we 
establish a volatility approach to obtain daily standard deviation values. Secondly, we establish a 
method of distribution for returns; normally this is set to follow a normal distribution. However, it is 
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well-documented in the literature that financial returns are not normally distributed. Therefore, 
volatility models are combined with historical past standardized returns to compute one day 1% and 
5% VaRs measures, these VaR measures are performed using GARCH-based, FHS, and EVT 
specifications, which are compared to benchmarks such as Historical Simulation and the JP Morgan 
RiskMetrics models.    

2.2. Historical Simulation Method 
The simple non-parametric HS technique assumes that a normal distribution of tomorrow’s returns,

1+tR , is well explained by the empirical distribution of the past m observed returns, that is, 

{ }m
tR 11 =−+ ττ . Therefore, one day ahead value at risk with a confidence level (1-α), is simply calculated 

as 100pth percentile of sequence of past portfolio returns in the form; 

             𝑽𝑽𝑽𝑽𝑽𝑽𝒕𝒕+𝟏𝟏
𝟏𝟏−𝜶𝜶 = −𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 {{𝑹𝑹𝒕𝒕+𝟏𝟏−𝝉𝝉}𝝉𝝉=𝟏𝟏

𝒎𝒎 ,𝜶𝜶}                                    (2.2) 

Typically m is chosen in practice to be between 250 and 1000 days corresponding to approximately 1 
to 4 years. For the purposes of this study we use a 250 days period. This simple non-parametric 
method is not suitable for measuring high volatility and is only used as a benchmark in our analysis.  

2.3. Volatility Modeling 
One important objective of this paper is to establish a framework to model non-normal conditional 
distribution of shipping freight returns for spot freight markets. To this end, we are particularly 
interested in normal and non-normal approaches to variance modelling. Under a normal assumption 
framework we maximize the following likelihood function to arrive to variance coefficients estimates, 
Aldrich (1997).  
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In other words, for variance models impeded with assumed normally distributed row returns we 
maximize the following joint likelihood function of the observed sample. 
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For variance models impeded with standardized returns 111 +++ = ttt Rz σ  with )(~1 dtzt+ . Where 
standardized returns are assumed to follow a student t distribution we maximize the following joint 
likelihood function, where d parameter is degrees of freedom; 
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For more details see Bollerslev and Wooldridge (1988, 1992). 

2.3.1. The Risk Metrics Model 
In the JP Morgan RiskMetrics model time varying variance, takes the form; 

σt+1
2  = λσt

2 + (1-λ)Rt
2                                                     (2.7) 

With λ =0.94. Thus, based on Risk Metrics methodology, forecasts of tomorrow’s volatility are simply 
a weighted average of today’s volatility and today’s squared return. 

2.3.2. The symmetric GARCH Model 
Bollerslev (1986, 1998) developed the symmetric normal general autoregression conditional 
heteroscedasticity (SGARCH) model, which is a generalization of the ARCH model that was developed 
by Engle (1982). The SGARCH model assumes that the dynamic behaviour of the conditional variance 
depends on absolute values of market shocks and the persistence of conditional variance. This is 
represented as follows: 

𝜎𝜎𝑡𝑡+1
2 = 𝜔𝜔 + 𝛼𝛼𝜀𝜀𝑡𝑡2 + 𝛽𝛽𝜎𝜎𝑡𝑡2        𝜀𝜀𝑡𝑡 |𝐼𝐼𝑡𝑡  ~ 𝑁𝑁(0,𝜎𝜎𝑡𝑡2)                              (2.8) 

Where 𝜎𝜎𝑡𝑡2 represents the dynamic conditional variance, 𝜔𝜔 refers to the constant, 𝛼𝛼 is the market 
shock coefficient, β is the lagged conditional variance coefficient and 𝜀𝜀𝑡𝑡  denotes the market shock and 
is assumed to be normally distributed with zero mean and time varying conditional variance. In this 
study mean return is assumed to be zero because of the short period forecast, therefore the above 
equation is rewritten as: 

𝜎𝜎𝑡𝑡+1
2 = 𝜔𝜔 + 𝛼𝛼𝑅𝑅𝑡𝑡2 + 𝛽𝛽𝜎𝜎𝑡𝑡2        𝑅𝑅𝑡𝑡 |𝐼𝐼𝑡𝑡  ~ 𝑁𝑁(0,𝜎𝜎𝑡𝑡2)                            (2.9) 

Where 𝛼𝛼 + 𝛽𝛽 < 1. 𝛼𝛼 is the weight assigned to squared return at time t 2
tR and 𝛽𝛽 is the weight 

assigned to variance at time t σt
2. The GARCH model implicitly relies on the long-run average 

variance σ2, so that 𝜎𝜎2 = 𝜔𝜔/(1 − 𝛼𝛼 − 𝛽𝛽). 

2.3.3 The asymmetric GARCH   
Simple GARCH models by definition do not capture conditional non-normality in returns. However it 
has been argued in the literature that bad news represented by negative returns increases price 
volatility by more than good news represented by positive returns, of the same magnitude, this is 
referred to as a leverage effect. The simple GARCH model is modified so that the weight given to the 
return depends on whether the return is positive or negative, expressed in the following format:  

𝝈𝝈𝒕𝒕+𝟏𝟏
𝟐𝟐 = 𝝎𝝎 + 𝜶𝜶𝑹𝑹𝒕𝒕𝟐𝟐 + 𝜶𝜶𝜶𝜶𝑰𝑰𝒕𝒕𝑹𝑹𝒕𝒕𝟐𝟐 + 𝜷𝜷𝝈𝝈𝒕𝒕𝟐𝟐                                              (2.10) 

Thus, θ  larger than zero will again capture the leverage effect, this is referred to as the GJR-GARCH 
model, Glosten, Jagannathan, and Runkle (1993).  
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2.3.4 Filtered Historical Simulation (FHS) 
The filtered historical simulation combines the best of the model-based methods of variance with 
model-free methods of distribution. Once the 1-day ahead volatility is calculated the 1-day ahead 
value at risk is simply computed using the percentile of the database of standardized returns in the 
form of; 

  𝑉𝑉𝑉𝑉𝑉𝑉𝑡𝑡+1
1−𝛼𝛼 = −𝜎𝜎𝑡𝑡+1𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ��𝑍̂𝑍𝑡𝑡+1−𝜏𝜏�𝜏𝜏=1

𝑚𝑚 ,𝛼𝛼�                                     (2.11) 

Where  ẑt+1-τ represents standardized returns drown form past observed returns and calculated as 
ẑt+1-τ= Rt+1-τ σt+1-τ⁄ , for τ=1,2,…,m.                       

2.4 Extreme Value Theory (EVT) 
A shortcoming of the VaR measure is that it ignores the magnitude of extreme negative returns, 
which is important for financial risk managers. Extreme Value Theory fills this gap. Thus, modelling 
conditional normality is performed by combining a variance model with an EVT application based on 
standardized returns ẑt+1-τ= Rt+1-τ σt+1-τ⁄   ~ 𝑖𝑖𝑖𝑖𝑖𝑖 𝐷𝐷(0,1). For a more detailed discussion of EVT see 
Christoffersen (1998, 2001, 2003). 

2.5 Markov-switching GARCH models 
This study investigates for the first time the possibility of conditional variance switching between two 
sets of constant parameter values, one set representing a high volatility regime and the other a low 
volatility regime, each value being conditional on a state variance which indicates the regime 
prevailing at the time. The switching process is captured by time variance estimates of the conditional 
probability of each state and an estimate of a constant matrix of state transition probabilities. In the 
Markov-switching model the regression coefficients and the variance of the error terms are all 
assumed to be state dependent. Returns are assumed normally distributed in each state. The Markov-
switching models is expressed as 

𝝈𝝈𝒕𝒕+𝟏𝟏
𝟐𝟐 = �

𝝈𝝈𝟏𝟏𝟏𝟏+𝟏𝟏
𝟐𝟐 → 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝟏𝟏

𝝈𝝈𝟐𝟐𝟐𝟐+𝟏𝟏
𝟐𝟐 → 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝟐𝟐

�       𝝈𝝈𝒕𝒕+𝟏𝟏
𝟐𝟐  ~ 𝑵𝑵(𝟎𝟎,𝝈𝝈𝒔𝒔𝒕𝒕+𝟏𝟏

𝟐𝟐 )                            (2.12)    

The state variance is assumed to follow a first-order Markov chain where the transition probabilities 
for the two states are assumed to be constant in the form of: 

𝛱𝛱 = �
𝜋𝜋11 𝜋𝜋21
𝜋𝜋12 𝜋𝜋22

� = �𝜋𝜋𝑖𝑖𝑖𝑖 �                                                         (2.13) 

 

Where 𝝅𝝅 denotes the probability of being in state one, 𝝅𝝅𝟏𝟏𝟏𝟏 denotes the probability of staying in state 
one,  𝝅𝝅𝟐𝟐𝟐𝟐 denotes the probability of staying in state two, 𝝅𝝅𝟏𝟏𝟏𝟏 denotes the probability of switching 
from state one to state two, 𝝅𝝅𝟐𝟐𝟐𝟐 denotes the probability of switching from state two to state one, at 
any given point in time. For the purposes of this study state one denotes the high volatility regime 
and state two (zero) denotes the low volatility regime.The relations between these transition 
probabilities are explained as; 𝝅𝝅𝟐𝟐𝟐𝟐 = (𝟏𝟏 − 𝝅𝝅𝟐𝟐𝟐𝟐); 𝝅𝝅𝟏𝟏𝟏𝟏 = (𝟏𝟏 − 𝝅𝝅𝟏𝟏𝟏𝟏) and state two = (𝟏𝟏 − 𝝅𝝅). The 
unconditional probability of regime one is expressed as: 

 𝝅𝝅𝟐𝟐𝟐𝟐 (𝝅𝝅𝟏𝟏𝟏𝟏 + 𝝅𝝅𝟐𝟐𝟐𝟐)⁄  𝒐𝒐𝒐𝒐 𝝅𝝅 = 𝝅𝝅𝟏𝟏𝟏𝟏𝝅𝝅 + 𝝅𝝅𝟐𝟐𝟐𝟐(𝟏𝟏 − 𝝅𝝅). 
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2.6 Back Testing VaRs 
For purposes of examining the accuracy of forecasts, we split the total sample in two periods. The first 
period is for model estimation; this is used for calculating VaRs for the second period, which is then 
back tested against actual returns for the same period. The α−

+
1

1tVaR measure promises that only α 

×100% of the time the actual return will be worse than the forecast α−
+

1
1tVaR measure. For the 

purposes of evaluating the accuracy of forecasts, this study conducts the unconditional coverage test, 
the independent test and the conditional test. For more details see Christofferson, (1998).  

2.7.Misspecification Tests 
In estimating econometric models using the maximum likelihood estimation method, there is a 
possibility of improving the log-likelihood by adding parameters, which may result in over fitting. This 
problem is overcome in the literature by model selection criteria. They resolve this problem by 
introducing a penalty term for the number of parameters in the model. The following criteria are used 
to rank and compare the proposed models in this study. Akaike (1974), Schwartz (1978), Shibata 
(1978), and the following mathematical formulae are used: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  −2 𝐿𝐿𝐿𝐿𝐿𝐿  𝐿𝐿
𝑛𝑛

+  2 𝑘𝑘
𝑛𝑛

                                                  (2.14) 

𝑆𝑆𝑆𝑆ℎ𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 =  −2 𝐿𝐿𝐿𝐿𝐿𝐿  𝐿𝐿
𝑛𝑛

+  2 log (𝑘𝑘)
𝑛𝑛

                                             (2.15) 

𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  −2 𝐿𝐿𝐿𝐿𝐿𝐿  𝐿𝐿
𝑛𝑛

+  𝑙𝑙𝑙𝑙𝑙𝑙 �𝑛𝑛+2𝑘𝑘
𝑛𝑛
�                                           (2.16) 

Log L is the log-likelihood value; n is the number of observations and k is the number of estimated 
parameters. The optimal model is selected by minimizing the values obtained by computing the above 
equations.   

The Residual-Based Diagnostic (RBD) for conditional heteroscedasticity proposed by Tse (2002) is 
applied in this study with various lag values to test for the presence of heteroscedasticity in the 
standardized residuals by running the following regression: 

𝐸𝐸(𝑧̂𝑧𝑡𝑡2) − 1 = 𝑑𝑑1𝑧̂𝑧𝑡𝑡−1
2 + ⋯+ 𝑑𝑑𝑀𝑀𝑧̂𝑧𝑡𝑡−𝑀𝑀2 + 𝑢𝑢𝑡𝑡                                         (2.17) 

Tse (2002) derives the asymptotic distribution of the estimated parameters and shows that a joint 
test of significance of the 𝑑𝑑1, … . ,𝑑𝑑𝑀𝑀 is a 𝑥𝑥2(𝑀𝑀) distribution.  

Misspecification of the conditional variance equation and the presence of leverage effects are 
investigated through the diagnostic test of Engle and Ng (1993). They use a dummy variable which 
takes the value of 1 when 𝑅𝑅𝑡𝑡+1

2  is a negative value and zero otherwise. This test examines if squared 
residuals can be predicted by 𝑆𝑆𝑆𝑆𝑆𝑆,𝑡𝑡−1,𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑅𝑅𝑡𝑡−1𝑎𝑎𝑎𝑎𝑎𝑎/𝑜𝑜𝑜𝑜𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1𝑅𝑅𝑡𝑡−1. In this study we test the 
presence of leverage effect through the Sign Bias Test and the negative and positive size effect 
through the NSBT and PSBT, respectively. Engle and Ng (1993) recommend running the following 
regressions using a T-test to test for the significance of 𝛼𝛼1, 𝑏𝑏1𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐1. 

 

𝑅𝑅𝑡𝑡2 = 𝛼𝛼0 + 𝛼𝛼1𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡−1 + 𝑢𝑢𝑡𝑡                                                         (2.18) 

 
𝑅𝑅𝑡𝑡2 = 𝑏𝑏0 + 𝑏𝑏1𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡−1𝑅𝑅𝑡𝑡−1

2 + 𝑢𝑢𝑡𝑡                                                    (2.19) 
 



Measuring level of risk exposure in tanker shipping freight markets 
Wessam  m. T.  Abouarghoub/Iris Biefang-frisancho mariscal  

 

Page | 27  
 

𝑅𝑅𝑡𝑡2 = 𝑐𝑐0 + 𝑐𝑐1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡−1𝑅𝑅𝑡𝑡−1
2 + 𝑢𝑢𝑡𝑡                                                     (2.20) 

3. The Empirics 

3.1 Simple Analysis and the Data Sample 
In a quest to measure the level of risk exposure in shipping tanker freights, a value at risk 
methodology is applied to five major dirty tanker shipping routes, represented in table 1. The data 
sample consists of five Baltic Dirty Tanker Indexes (BTDIs), these are indications of freight movements 
for dirty oil products. The five chosen indexes are the oldest and most active tanker freight markets, 
they also represent three important segments of the tanker industry, VLCC, Suezmax and Aframax.2 
These voyage charter routes are quoted in World scale points.  A voyage charter provides transport 
for a specific cargo between two ports for a fixed price per ton of cargo. For purposes of this study 
returns are computed in the following form: 

)1.3()()( 11 ttt SInSInR −= ++                                          

Where St denotes spot price at time t and St+1 spot prices at time t+1. The BDTIs consist of 18 voyage 
charter routes3 quoted in World scale points. The World Scale point is a fraction of the flat rate 
instead of a plus or minus percentage and is derived assuming that a tanker operates on a round 
voyage between designated ports. This calculated schedule is the flat rate expressed in US$/ton. The 
tanker industry uses this freight rate index as a more convenient way of negotiating and comparing 
freight prices per ton of oil transported on different routes. 

For the purposes of this study, we examine daily shipping freight returns for five major dirty tanker 
shipping routes; the full data sample period is from 27-JAN-98 to 30-OCT-09. The data period used for 
estimation is from 27-JAN-98 to 24-DEC-07, and the data period used for evaluation is from 02-AUG-
2008 to 30-OCT-09. The data sample was downloaded from Clarkson Intelligence Network website, 
where all spot prices are expressed in World Scale.  

The primary goal of the study is to examine market shocks effects and the level of risk exposure in 
shipping tanker freight prices, through assessing the capability of a number of approaches to 
accurately measure VaR for shipping freight returns. Therefore, the full data sample is divided into an 
in-sample period; on which the model estimation section are based, and an out-of-sample period over 
which VaR performance is measured. Descriptive statistics along with preliminary tests for daily spot 
and return freight prices for five shipping tanker routes are represented in tables 2 and 3. Statistics 
are shown for full-sample, as well as in-sample and out-off sample periods. While the positive 
skewness, high kurtosis and the Jarque-Bera normality test clearly illustrate the non-normality of the 
distribution, the mean daily returns are quite close to zero, which support the zero mean assumption. 
There is clear evidence of volatility clustering in daily freight returns. There are high freight volatility 
periods mixed with low freight volatility periods, which suggests the presence of heteroscedasticity, 
see Figure 1. As a high ARCH order is vital to catch the dynamic of conditional variance, we apply 
Engle’s LM ARCH test on daily freight returns for different lags. This confirms the presence of ARCH 
effects which is what the literature suggests (Engle, 1982). The high positive value of skewness and 
the high kurtosis for daily tanker freight returns are tested; their t-tests and p-values are reported in 
Table 3. The stationarity of daily freight returns was tested using the Augmented Dickey-Fuller unit 
root test (see Dickey and Fuller, 1981). 

                                                 
2 VLCC refers to very large crude carrier with a capacity of more than 200k dwt, Capesize refers to 
vessels with capacity between 120-200k dwt and Aframax refers to vessels with capacity between 80-
120k dwt. 
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Table 1 Dirty Tanker routes and cargo description 

 

Source: Baltic Exchange and Reuters. 

Table 1: Describes the five Dirty Tanker shipping routes under investigation. 
First, second and third columns, represents shipping voyage route number, 
voyage route description and vessel capacity, respectively. The third column is 
also an indication of vessel type and size. VLCC, VLCC, Suezmax, Aframax and 
Panamax vessels operate on routes, TD3, TD4, TD5, TD7 and TD9, respectively. 
Forth, fifth  and last columns represent daily bunker consumption in metric tons, 
number of steaming days and total bunker consumption for the voyage, 
respectively. 

 
Table 2 Spot & Returns Freight Rate Statistics 

 

Source: Authors. 

Table 2: Represents summary of basic statistics of spot prices and return 
values for shipping freight rates, for five tanker routes and for the full-
sample period, this starts from 27-Jan-98 to 30-Oct-09 and includes the 
estimation and testing periods. Total observations are 2949 and 2948 for 
freights spot prices and freight returns, respectively. It is clear from 
minimum, maximum and standard deviation of freight prices and returns the 
large spread and high volatility in freight price. All routes show signs of 
positive skewness, high kurtosis and departure from normality represented 

Route Route Description
Capacity 

Metric tons
Port 

Costs $
Bunker Cons     

Per Day
Days of 

Voy
Total Bunker 
Consumption

TD3 MEG (Ras Tanura) to Japan (Chiba) 260,000 160,837 70 tons 45.5 3,185 tons
TD4 West Africa (boony) to US Gulf (LOOP) 260,000 161,334 65 tons 39 2,535 tons
TD5 West Africa (boony) to USAC Gulf (Philadelphia) 130,000 133,167 60 tons 35 2100 tons
TD7 North Sea (Sullom Voe) to continent (Wilhelmshaven) 80,000 204,600 36.5 tons 8.3 303 tons
TD9 Caribben (Puerto la Cruz) to US Gulf (Corpus Christi) 70,000 87,000 47 tons 15 705 tons

Variable Minimun Mean Maximum Std Dev Skewness Excess 
Kurtosis

Jarque Bera

S TD3 25.36 88.67 342.97 51.1 1.678 3.673 3041.2[0.00]
S TD4 29.81 91.91 304.17 46.2 1.345 2.37 1579.5[0.00]
S TD5 38.19 126.75 399.79 57.3 1.176 1.703 1036.5[0.00]
S TD7 61.59 141.81 359.09 54.3 1.06 0.938 660.19[0.00]
S TD9 52.5 179.73 450.45 77.9 1.007 0.672 553.83[0.00]
R TD3 -0.502 -0.0000846 0.39961 0.051 0.255 14.152 24633[0.00]
R TD4 -0.343 -0.0000569 0.28743 0.036 0.11 12.986 20719[0.00]
R TD5 -0.357 -0.0001049 0.28881 0.044 0.46 7.904 7777.1[0.00]
R TD7 -0.499 -0.0001037 0.42700 0.049 0.877 17.136 36446[0.00]
R TD9 -0.517 -0.0001305 0.46239 0.061 0.643 13.952 24114[0.00]
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by the Jarque-Bera test. Values in [ ] are p values, which are significance for 
all routes. S stands for spot and R for returns. 

Table 3 Daily Returns Statistics 

 

Source: Authors. 

Table 3: Represents basic statistics summary of spot freight returns, for five 
tanker routes. The table is subsequently divided to two sections. First section 
represents statistics for in-sample period from 27-01-1998 to 24-12-07. 
Second section, represents statistics for out-off-sample period from 02-01-

R TD3 -0.502 0.000613 0.399 0.049 0.3149 15.55
(6.42) [0.00] (158.4) [0.00]

R TD4 -0.284 0.000439 0.257 0.033 0.4943 11.73
(10.07) [0.00] (119.6) [0.00]

R TD5 -0.208 0.0003408 0.261 0.039 0.7723 7.04
(15.73) [0.00] (71.7) [0.00]

R TD7 -0.499 0.000283 0.427 0.046 1.3503 20.91
(27.50) [0.00] (213.0) [0.00]

R TD9 -0.419 0.000521 0.462 0.055 0.6867 14.27
(13.98) [0.00] (145.3) [0.00]

R TD3 -0.373 -0.003834 0.303 0.055 0.048001 8.641
(0.423) [0.67] (38.1) [0.00]

R TD4 -0.343 -0.002726 0.287 0.051 -0.408971 9.901
(3.60) [0.00] (43.7) [0.00]

R TD5 -0.357 -0.002506 0.288 0.061 -0.015508 5.866
(0.14) [0.89] (25.8) [0.00]

R TD7 -0.355 -0.002187 0.338 0.064 -0.010758 7.673
(0.95) [0.34] (33.8) [0.00]

R TD9 -0.517 -0.003633 0.425 0.087 0.563757 8.459
(4.96) [0.00] (37.3) [0.00]

Normality Test
1-2 1-5 1-10 1-20

R TD3 -28.91 50.414 23.471 14.504 8.7271 25088
(0) [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

R TD4 -30.81 53.204 21.575 13.565 7.5352 14386
(0) [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

R TD5 -31.34 32.155 13.733 9.4817 5.3898 5381.1
(0) [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

R TD7 -28.12 25.711 10.41 10.875 5.6966 46039
(0) [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

R TD9 -33.53 53.07 22.137 11.905 6.53.97 21276
(0) [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

R TD3 -11.17 4.1156 9.7671 5.4019 4.3997 1437.72
(0) [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

R TD4 -13.82 1.9608 0.89421 0.43301 2.4363 1899.71
(0) [0.00] [0.14] [0.48] [0.93] [0.00] [0.00]

R TD5 -13.31 5.6914 2.5976 1.1466 2.0348 662.541
(0) [0.00] [0.00] [0.02] [0.33] [0.01] [0.00]

R TD7 -13.00 1.4509 0.84634 0.4335 2.4565 1134.17
(0) [0.00] [0.23] [0.52] [0.93] [0.00] [0.00]

R TD9 -16.81 7.7191 3.7598 1.9065 1.3484 1402.02
(0) [0.00] [0.00] [0.00] [0.04] [0.14] [0.00]

Out-Sample period From 02-01-2008 to 30-10-2009 (462 observations)

In-Sample period From 27-01-1998 to 24-12-2007 (2486 observations)

Out-Sample period From 02-01-2008 to 30-10-2009 (462 observations)

In-Sample period From 27-01-1998 to 24-12-2007 (2486 observations)

Route

Skewness Excess Kurtosis

ADF(Lag) 

Route Minimun Mean Maximum Std Dev

ARCH Test
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2008 to 30-10-2009. It is clear from minimum, maximum and standard 
deviation values of freight returns for both periods, the large spread and 
high volatility in freight returns. All routes show signs of positive and 
negative skewness, high kurtosis and departure from normality represented 
by the Jarque-Bera test, which is significance for all routes. J-B is the Jarque-
Bera normality test. The 5% critical value for this statistic is 5.99. Values in [ ] 
are p values. 

BDTI TD3: 250,000mt, Middle East Gulf to Japan 

 
BDTI TD4: 260,000mt, West Africa to US Gulf 

 
BDTI TD5: 130,000mt, West Africa to USA 



Measuring level of risk exposure in tanker shipping freight markets 
Wessam  m. T.  Abouarghoub/Iris Biefang-frisancho mariscal  

 

Page | 31  
 

 
BDTI TD7: 80,000mt, North Sea to Continent 

 
BDTI TD9: 70,000mt, Caribbean to US Gulf 

 
 

Source: Authors. 

Figure 1: Spot prices, returns and volatility. The figure shows summary plots for daily 
shipping spot freight rates data for five major dirty tanker routes: TD3, TD4, TD5, TD7 and 
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TD9.The left, middle and right columns display spot freight rate prices in world scale, 
returns and the volatility of daily returns respectively. The volatility is measured using a 
Symmetric GARCH model. 

 

3.2 Conditional Volatility Models Estimations 
This study aims to measure level of risk exposure in tanker shipping freights through computing a 1-
day VaR measure, based on a conditional volatility framework. Therefore, we implement the use of a 
symmetric and asymmetric GARCH model in different variations, to capture the dynamics of the 
conditional variance, these models are, the SGARCH, SGARCH-t-(d), AGARCH and AGARCH-t-(d) 
models. The in-sample parameters estimations are performed using the Maximum Likelihood 
Estimation (MLE) method, with variance targeting and a constrained positive conditional variance; 
these are represented in Table 4 subsequently for all models. The first section represents parameter 
estimations for Symmetric GARCH model. The second section represents parameter estimations for t-
Student Symmetric GARCH model, which is capable to better adjust to high markets shocks in 
absolute values. The third section represents parameter estimations for the Asymmetric GARCH 
model that captures leverage effects in the series. The final part of the table represents parameter 
estimations for t-Student Asymmetric GARCH model that accounts for leverage effects and extreme 
non-normality, this means that it is better in dealing with high negative shocks in freight returns.  The 
estimated coefficients are significant and positive except for the leverage effect parameter for route 
TD7, which is an indication of the unsuitability of the AGARCH framework for modelling Aframax 
vessel operations in the North Sea area. Empirical results indicate that over all the t-Student AGARCH 
framework has the better fit with the characteristics of tanker shipping freight markets, accounting 
for asymmetric market shocks, large losses and conditional volatility. However, the model does not 
sufficiently account for fat tail losses as compared with the data. This shortcoming has been 
overcome by adopting an Extreme Value Theory approach.   
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TD3 TD4 TD5 TD7 TD9

α 0.052266 (2.2)** 0.423769 (6.)*** 0.144240 (2.6)*** 0.570416 (8.6)*** 0.253777 (4.1)***
β 0.937909 (31.3)*** 0.155865 (1.73)* 0.804416 (10.1)*** 0.175099 (1.8)* 0.591865 (4.9)***
ω 0.000024 0.000463 0.000081 0.000546 0.000461

PER 0.990170 0.579630 0.948660 0.745510 0.845640
MLE 4353.36 5205.99 4718.29 4538.49 3965.50

Skewness 0.62846(12.8)*** -0.15908(3.24)*** 0.75115(15.29)*** 0.69826(14.22)*** 0.00762(0.15)
Ex Kurtosis 13.59 (138.5)*** 16.98 (172.9)*** 7.38 (75.22)*** 16.71 (170.2)*** 14.6 (148.4)***

J-B 19318 [0.00] 29870 [0.00] 5880.5 [0.00] 29114 [0.00] 21990 [0.00]
Akaike -3.500688 -4.186640 -3.794282 -3.649627 -3.188656

Schwarz -3.501739 -4.187692 -3.795334 -3.650678 -3.189707
Shibata -3.500689 -4.186642 -3.794284 -3.649628 -3.188657

α 0.608579 (8.4)*** 0.603571 (10.5)*** 0.216544 (3.3)*** 0.737084 (21.0)*** 0.637302 (17.3)***
β 0.259230 (2.51)** 0.163018 (1.78)* 0.739758 (8.8)*** 0.130825 (2.8)*** 0.139701 (3.3)***
ω 0.000327 0.000257 0.000069 0.000283 0.000666

DF 3.236782(30.6)*** 2.943359(33.8)*** 2.785575 (35.1)*** 3.074745(34.8)*** 2.780335(40.5)***
PER 0.867810 0.766590 0.956300 0.867910 0.777000
MLE 5001.433 5863.614 5277.778 5286.859 4701.828

Skewness 0.95631(19.5)*** -0.54964(11.2)***  0.76306 (15.5)*** 0.72785 (14.8)*** -0.06271 (1.27)
Ex Kurtosis 21.8 (222.3)*** 24.0 (244.6)*** 8.0 (81.5)*** 15.9 (162.8)*** 18.5 (189.0)***

J-B 49702 [0.00] 59822 [0.00] 6874.5 [0.00] 26670 [0.00] 35658 [0.00]
Akaike -4.021265 -4.714895 -4.243586 -4.250892 -3.780232

Schwarz -4.022795 -4.716424 -4.245116 -4.252422 -3.781761
Shibata -4.021268 -4.714898 -4.243589 -4.250895 -3.780235

α 0.09351 (0.821) 0.07458 (0.831) 0.120514 (2.1)** 0.671043 (5.1)*** 0.163872 (2.38)**
β 0.802301 (3.3)*** 0.849388 (4.9)*** 0.807239 (9.9)*** 0.192970 (1.82)* 0.624246 (5.2)***
ω 0.000138 0.000048 0.000082 0.000526 0.000408
θ 0.09658(0.916) 0.06538 (1.210) 0.04097 (1.232) -0.2191 (-1.280) 0.150081 (2.56)**

PER 0.944095 0.956669 0.948239 0.754475 0.863159
MLE 4341.25 5207.74 4720.98 4546.97 3978.48

Skewness 0.44780(9.1)*** 0.54845(11.2)*** 0.80969(16.5)*** 0.37043(7.5)*** 0.17474(3.7)***
Ex Kurtosis 22.6 (230.5)*** 11.6 (118.5)***  7.4 (75.5)*** 16.9 (172.3)*** 14.1 (143.8)***

J-B 53107 [0.00] 14130 [0.00] 5955.6 [0.00] 29693 [0.00] 20649 [0.00]
Akaike -3.490144 -4.187238 -3.795640 -3.655644 -3.198291

Schwarz -3.491674 -4.188768 -3.797169 -3.657173 -3.199821
Shibata -3.490147 -4.187241 -3.795642 -3.655647 -3.198294

α 0.509476 (5.2)*** 0.474906 (5.5)*** 0.155855 (2.8)*** 0.750230 (12.9)*** 0.496058 (6.5)***
β 0.288558 (2.7)*** 0.193566 (1.89)* 0.746735 (9.1)*** 0.130917 (2.8)*** 0.161557 (3.2)***
ω 0.000304 0.000242 0.000063 0.000283 0.000641
θ 0.158352 (1.99)** 0.223629 (2.31)** 0.114674 (2.6)*** -0.02656 (-0.282) 0.255004 (2.47)**

DF 3.244153 (30.7)*** 2.941253(34.4)*** 2.812469 (35.9)*** 3.076287 (34.6)*** 2.779176 (40.5)***
PER 0.877209 0.780287 0.959927 0.867865 0.785118
MLE 5003.39 5866.36 5283.83 5286.90 4705.08

Skewness 1.212 (24.7)*** -0.402 (8.2)*** 0.92450(18.8)*** 0.69406 (14.1)*** 0.09367 (1.9)*
Ex Kurtosis 25.68 (231.1)*** 24.5 (249.9)*** 8.2508 (84.1)*** 15.984 (162.9)*** 18.167 (185.1)***

J-B 53900 [0.00] 62430 [0.00] 7405.6 [0.00] 26665 [0.00] 34189 [0.00]
Akaike -4.022034 -4.716299 -4.247652 -4.250120 -3.782039

Schwarz -4.024137 -4.718402 -4.249754 -4.252223 -3.784142
Shibata -4.022039 -4.716304 -4.247657 -4.250125 -3.782045

Asymmetric GARCH

Asymmetric GARCH-t(d)

Symmetric GARCH

Symmetric GARCH-t(d)

Table 4 Estimating GARCH models 

Source: Author. 

Table 4: Represents parameters estimation results for Symmetric GARCH, Student-t Symmetric GARCH, 
Asymmetric GARCH, Student-t Asymmetric GARCH models, respectively. Variables estimated are α, β, 
ω, θ and DF these are freight shocks coefficient, one lagged volatility coefficient, the constant, negative 
freight shocks coefficient and degrees of freedom, respectively.  PER represents persistence of the 
model and MLE denotes Maximum likelihood estimation. Values in ( ) are t statistics and *,** and *** 
represents 1%, 5% and 10% significance levels. Values in ( ) are t statistics and ***,** and * represents 
1%, 5% and 10% significance levels. Normality tests are conducted on standardized returns for each 
model, this includes Skewness, Kurtosis and J-B tests. Akaike, Schwarz and Shibata criteria are used for 
ranking models, * indicate minimum values. 
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3.3  The Analysis of Conditional Volatility Structure  
It is frequently argued in the literature that negative returns have larger effects on price volatilities 
than positive returns. A simple systematic GARCH framework explains the dynamics changes in freight 
volatilities, in regards to market shocks in absolute values and lagged freight volatilities, 
undistinguishing between negative and positive shocks. By adopting an AGARCH framework, a 
responding parameter to negative shocks is included in the conditional variance framework. In 
addition a t-Student Asymmetric GARCH framework has the capability of capturing large negative 
shocks in comparison to the former framework. 

Empirical results clearly suggest that the sensitivity of freight volatility to negative and positive 
returns is distinct across tanker routes, with vessels operating in the North Sea area, standing out with 
the highest sensitivity to absolute market shocks, as there is enough evidence to indicate that this 
market has a very short memory for negative shocks. This can be attributed to market conditions, 
such as short voyages, low bunker consumption, the highly active shipping area, and also, the vessel 
size when compared to vessels operating on the other routes.      

For diagnostic purposes we employ the use of some misspecification tests. The results are presented 
for models with significant coefficients in Table 5. Using Engle and Ng (1993) diagnostic tests to test 
the conditional variance framework, there are clear indications of asymmetry in freight returns in all 
routes. For TD3, TD4, TD5 and TD9 tanker routes, a nonlinear conditional asymmetric framework is 
adequate in modelling freight returns. As for route TD7, diagnostic tests, model estimations and 
model selection criteria, all confirm that a nonlinear symmetric conditional variance framework is 
more adequate in modelling freight returns for TD7.  
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Table 5 Misspecification Tests and Diagnostics

 
Source: Author. 
Table 5: Represents misspecification tests and ranking for Conditional Variance models. The table is 
subsequently divided to four sections, Tests for SGARCH, Tests for Student-t SGARCH, Tests for 
AGARCH and Tests for Student-t AGARCH models. Normality tests are conducted on standardized 
returns for each model, this includes Skewness, Kurtosis and J-B tests. Akaike, Schwarz and Shibata 
criteria are used for ranking models, * indicate minimum values. SBT is the sign bias test, PSBT is the 
positive sign bias test, and NSBT is the negative sign bias test. RBD is the residual based diagnostic for 
presence of conditional heteroscedasticity. Values in ( ) are number of lagged standardized residuals. 
Values in [] are p values. 

TD3 TD4 TD5 TD7 TD9

SBT 0.6332  [0.526] 2.4765 [0.013] 2.2038 [0.027] 1.3689 [0.171] 1.2954 [0.195]
NSBT 2.9125  [0.004] 0.9083 [0.364] 1.9640 [0.049] 0.1737 [0.862] 1.0245 [0.306]
PSBT 4.0900  [0.000] 0.3178 [0.751] 2.0163 [0.044] 0.5007 [0.616] 0.6401 [0.522]

RBD (2) 41.9053  [0.000] 0.0610 [0.969]  -32.28 [1.000] 0.3642 [0.834] 0.6233 [0.732]
RBD (5) 275.579  [0.000] 0.0760 [0.999] -23.95 [1.000] 1.3096 [0.934] 0.9492 [0.966]
RBD (10) -50.847  [1.000] 9.3969 [0.495]    3.43  [0.969] 8.5731 [0.573] 1.9246 [0.997]

SBT 0.4088  [0.683] 2.5333 [0.011] 2.3168 [0.020] 1.4014 [0.161] 1.3114 [0.189]
NSBT 0.1359  [0.892] 0.0821 [0.935] 0.8682 [0.385] 0.8579 [0.391] 0.7646 [0.445]
PSBT 0.6645 [0.506] 1.5827  [0.114] 0.3329 [0.739] 0.8971 [0.369] 1.3028 [0.193]

RBD (2)  0.061   [0.970] 0.0255  [0.987]   7.9583 [0.019]  0.6701 [0.715]   0.0436 [0.978]
RBD (5) 1.999   [0.849] 0.1919 [0.999] 10.3833 [0.065]  4.0965 [0.536] 10.4882 [0.063]
RBD (10) 12.21   [0.272] 5.6719 [0.842]   5.6033 [0.847] 19.1854 [0.038] 22.6069 [0.012]

SBT 0.5985 [0.549] 1.9947 [0.046] 2.2315 [0.026] 0.9115 [0.362] 1.4964 [0.135]
NSBT 1.5086 [0.131] 2.0149 [0.044] 1.7544 [0.079] 0.4454 [0.656] 0.6569 [0.511]
PSBT 2.3986  [0.016] 3.6442  [0.000] 2.4951 [0.013] 0.2320 [0.816] 1.5024 [0.133]

RBD (2) -1.168 [1.000]  -0.031 [1.000] -7.80429 [1.000]  0.326  [0.849] 1.810 [0.404]
RBD (5)  0.289 [0.998]   3.185 [0.672] -4.11908 [1.000] 1.368 [0.928] 2.410 [0.789]
RBD (10)  2.456 [0.992]  5.738  [0.836] 3.40566 [0.970] 9.540 [0.482] 3.041 [0.980]

SBT 0.7859 [0.432] 2.7952  [0.005] 2.6314 [0.009] 1.3402 [0.180] 1.7137 [0.087]
NSBT 0.2286  [0.819] 0.2049 [0.837] 0.4517 [0.651] 0.8440 [0.398] 0.8777 [0.380]
PSBT 0.5217 [0.602] 1.3380 [0.181] 0.9704 [0.332] 0.9147 [0.360] 1.0778 [0.281]

RBD (2) 0.076  [0.963] 0.008 [0.996] 299.34 [0.00]  0.666 [0.717]  0.023 [0.988]
RBD (5) 1.267  [0.938] 0.116 [0.999] 2363.9 [0.00] 4.113 [0.533] 10.555 [0.061]
RBD (10) 8.852  [0.546] 4.419 [0.926]    4.19 [0.94] 19.25 [0.037] 25.451 [0.005]

Misspecification of the conditional variance framework

The Residual-Based Diagnostic (RBD) for Conditional Heteroscedasticity

Symmetric GARCH

Symmetric GARCH-t(d)

Asymmetric GARCH
Misspecification of the conditional variance framework

The Residual-Based Diagnostic (RBD) for Conditional Heteroscedasticity

Asymmetric GARCH-t(d)

Misspecification of the conditional variance framework

The Residual-Based Diagnostic (RBD) for Conditional Heteroscedasticity

Misspecification of the conditional variance framework

The Residual-Based Diagnostic (RBD) for Conditional Heteroscedasticity
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TD3 TD4 TD5 TD7 TD9

0.213220 (9.78) 0.264150 (10.7) 0.234581 (10.5) 0.232483 (11.7) 0.266150 (12.2)
0.088479 (90.8) 0.123940 (76.1) 0.163850 (58.2) 0.124440 (81.4) 0.157330 (64.4)

0.293269 0.319359 0.411238 0.348646 0.371517
1.71% 1.11% 1.09% 1.23% 1.47%
8.80% 5.64% 6.06% 7.66% 8.76%
73.81% 71.60% 62.79% 68.34% 66.77%

13.69 Days 10 Days 7.43 Days 9.39 Days 7.65 Days
26.19% 28.40% 37.21% 31.66% 33.23%

4.89 Days 3.9 Days 4.43 Days 4.37 Days 3.82 Days

Average TLV Weight

Average THV Weight
Average LV Duration

Average HV Duration

Transition π12
Transition π21

Unconditional π
Low Daily Vol
High Daily Vol

3.4 Markov Regime-Switching Estimation 
This study finds supporting evidence that conditional variance switches between two state regimes, a 
high volatility and low volatility regime, with an average daily volatility of 1.32% and 7.38 per cent for 
low volatility states and high volatility states, respectively. The cluster in volatilities of freight returns 
is evident in Figure 2. In addition, Markov-Switching empirical findings represented in Table 6, 
suggests an average split of 70 per cent and 30 per cent for low volatility and high volatility, 
respectively. During high volatility periods, a time duration of four days is consistent across all routes, 
while a range of time durations from 7 days to 13.5 days is found during low volatility periods. The 
transition probability of being in state one (High Volatility) and previously being in state two (Low 
Volatility) is in the range from 8 per cent to 16 per cent at any given point of time across all routes, 
where as the transition probability of being in state two and previously being in state one is in the 
range from 21 per cent to 26 per cent. In summary, freight volatilities tend to have low tendency to 
shift from low volatility to high volatility compared with tendency of shifting from high to low 
volatilities, and once in high volatility state time duration is shorter compared to low volatility state.  

  Table 6 two state structures and conditional sensitivity structure 

Source: Authors. 

Table 6: This table presents transition probabilities, unconditional probability, two state volatility 
measures, average total low/high volatility weighting and daily average duration. The two state 
volatility regimes are represented by low and high volatility structures. 

𝜋𝜋12 : Transition probability of switching from state one to state two  
𝜋𝜋21 : Transition probability of switching from state two to state one  
𝜋𝜋:  Unconditional transition probability  
LDV : Low Daily Volatility  
HDV : High Daily Volatility  
ATLVW : Average Total  Low Volatility Weight  
ALVD : Average Low Volatility Duration  
ATHVW : Average Total High Volatility Weight AHVD : Average High Volatility Duration 
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Filtered regime probability for TD3 route 

Filtered regime probability for TD4 route 

Filtered regime probability for TD5 route 

Filtered regime probability for TD7 route 

Filtered regime probability for TD9 route 

Figure 2: Represents filtered regime probabilities for all tanker routes, with the shaded area representing 
the high volatility regime and the dark area representing daily returns.  

  

Source: Author
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3.5 VaR Empirical Results 
 

The performances of calculated 1 day VaR measures are back-tested against actual returns for out of 
sample. The back-testing results clearly highlight the superiority of semi-parametric models over 
other industry benchmark models. In other words, non-normal VaR measures are better capable to 
adapt to the conditional volatility of freight returns. The 1-day 1% and 5% VaR forecasts are explained 
in subsequent sections of Tables 7 and 8. In table 7, the first section represents calculated risk 
measures based on normal specifications and second section represents calculated risk measures 
based on non-normal specifications. Table 8 represents calculated risk measures based on filtered 
historical simulation specification. The results clearly indicate that FHS-GARCH-based models are 
superior in modelling daily VaRs for tanker freight returns and better capture volatility of returns 
compared with other models. In addition, estimated coefficients for the superior models are found to 
be positive, significant and with persistence less than one, which is an indication of the usefulness of 
these models as a measure of conditional volatilities for shipping freight returns. Furthermore, 
forecasts obtained through the FHS-GARCH-EVT model are good proxies for 1-day VaR for tanker 
freight rates.  

Table 9 illustrates VaR hit sequences, which is an indication, in percentage terms, of the level of 
violations occurring in VaR measures and is computed as follows: 

VaR Hit Sequence= Number of occurring violations
Total number of observations

 ×100                           (3.2) 

Where the number of occurring violations is the number of times that negative actual returns have 
exceeded forecasted VaR measures.  Average, minimum and maximum 1-day 1% and 5% VaR 
measures are reported in the same table. This is used as a measure of the VaR models’ ability to 
adjust to extreme movements in freight markets. As an approximation, the larger the spread between 
the reported average, minimum and maximum VaR values for a particular VaR model the higher is its 
adaptability to extreme market movements.  
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Table 7: Back Testing for Normal and Non-normal Value at Risk Modules

 
Table 7: Represents statistical tests of unconditional, independent and conditional 
coverage of the interval forecasts under each approach for the five routs under 
investigation, denoted by LRuc, LRind and LRcc, respectively. *, ** and *** denote 
significance at 10%, 5% and 1% level, respectively. The tests for LRuc and LRind are x1

1% and 
x1

5% for 1% VaR and 5% VaR, respectively. The tests for LRcc are x2
1% and x2

5% for 1% VaR and 
5% VaR, respectively. Critical values for x1

1%, x1
5%, x1

10%x2
1%x2

5%x2
10%are 6.63, 3.84, 2.7, 9.21, 

5.99 and 4.6, respectively. If value of the likelihood ratio is larger than the critical value the 
Value at Risk model is rejected at the significance level. 

 

Table 8: Back Testing for FHS-Value at Risk Modules 

1% 5% 1% 5% 1% 5% 1% 5% 1% 5%

LRuc 4.74** 0.81 6.41 0.81 14.8*** 0.16 2.05 1.47 14.7*** 0.16
LRind 11.9*** 29.5*** 17.3*** 29.5*** 17.4*** 24.5*** 15.1*** 23.3*** 0.45 0.11
LRcc 16.7*** 30.3*** 23.7*** 30.3*** 32.2*** 24.7*** 17.1*** 24.8*** 15.2*** 0.27
LRuc 12.4*** 1.86 31.3*** 3.96** 19.8*** 2.58 2.03 0.37 44.4*** 7.5***
LRind 0.61 2.14 0.00 0.07 0.21 0.00 2.43 0.18 0.11 1.99
LRcc 13.1*** 4.00 31.3*** 4.03 20.1*** 2.58 4.47 0.55 44.6*** 9.4***
LRuc 10.2*** 0.06 22.5*** 0.16 25.3*** 0.66 3.26* 0.00 31.3*** 3.96**
LRind 0.81 0.77 0.12 0.11 0.06 0.12 2.00 0.02 0.00 1.12
LRcc 11.1*** 0.83 22.6*** 0.27 25.4*** 0.78 5.26* 0.02 31.3*** 5.08*
LRuc 6.38** 1.28 25.4*** 2.58 25.4*** 2.58 1.06 0.00 41.2*** 6.53**
LRind 1.31 0.12 0.06 0.00 0.06 0.00 2.95* 0.02 0.06 0.30
LRcc 7.69** 1.40 25.4*** 2.58 25.4*** 2.58 4.01 0.02 41.2*** 6.82**
LRuc 1.06 4.36** 14.7*** 6.52** 17.2*** 10.8*** 0.37 0.04 51.7*** 17.3***
LRind 2.94* 3.43* 0.45 0.54 0.32 1.90 3.56* 0.44 0.12 0.04
LRcc 4.01 7.80** 15.2*** 7.06** 17.5*** 12.6*** 3.94 0.47 51.8*** 17.3***

LRuc 0.38 0.81 6.41** 0.21 6.41** 4.75** 8.2*** 7.5*** 6.38** 6.52**
LRind 19.6*** 29.5*** 17.3*** 25.7*** 10.7*** 20.8*** 1.04 0.39 1.31 0.54
LRcc 19.9*** 30.3*** 23.7*** 25.9*** 17.1*** 25.5*** 9.2*** 7.89** 7.69** 7.06**
LRuc 0.66 1.86 31.3*** 3.23* 2.03 2.58 8.2*** 7.4*** 8.2*** 7.5***
LRind 6.6*** 2.14 0.00 0.94 2.43 0.00 1.04 1.98 1.04 1.99
LRcc 7.31** 4.00 31.3*** 4.18 4.47 2.58 9.2*** 9.4*** 9.2*** 9.4***
LRuc 10.3*** 0.06 22.5*** 0.16 25.4*** 0.66 3.26* 0.00 31.4*** 3.9**
LRind 0.81 0.77 0.12 0.11 0.06 0.12 2.00 0.02 0.00 1.12
LRcc 11.1*** 0.83 22.6*** 0.27 25.4*** 0.78 5.26* 0.02 31.3*** 5.08*
LRuc 2.03 0.37 25.4*** 6.52** 19.8*** 6.53** 31.4*** 13.2*** 31.4*** 13.2***
LRind 2.43 3.53* 0.06 0.54 0.21 0.54 0.00 0.41 0.00 0.41
LRcc 4.47 3.90 25.4*** 7.06** 20.0*** 7.07** 31.4*** 13.7*** 31.4*** 13.7***
LRuc 1.92 2.56 14.8*** 8.5*** 0.66 13.2*** 4.72** 18.8*** 4.72** 17.3***
LRind 8.7*** 2.52 0.45 0.27 6.6*** 2.69 1.63 0.09 1.63 0.04
LRcc 10.6*** 5.08* 15.2*** 8.81** 7.31** 15.9*** 6.35** 18.8*** 6.35** 17.3***

SGARCH AGARCH SGARCH-t-(d) AGARCH-t(d)

Non-normal Value-at-Risk Models

Normal Value-at-Risk Models

Risk Metrics

TD3

TD4

TD5

TD7

TD9

TD3

TD4

TD5

TD7

TD9
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Table 8: Represents statistical tests of unconditional, independent and 
conditional coverage of the interval forecasts under each approach for the 
five routs under investigation, denoted by LRuc, LRind and LRcc, respectively. 
*, ** and *** denote significance at 10%, 5% and 1% level, respectively. The 
tests for LRuc and LRind are x1

1% and x1
5% for 1% VaR and 5% VaR, 

respectively. The tests for LRcc are x2
1% and x2

5% for 1% VaR and 5% VaR, 
respectively. Critical values for x1

1%, x1
5%, x1

10%x2
1%x2

5%x2
10%are 6.63, 3.84, 2.7, 

9.21, 5.99 and 4.6, respectively. If value of the likelihood ratio is larger than 
the critical value the Value at Risk model is rejected at the significance level. 

 
Table 9: Average Value at Risk statistics Results 

1% 5% 1% 5% 1% 5% 1% 5%
LRuc 2.05 1.47 0.03 1.47 1.07 1.47 3.28* 1.47
LRind 7.9*** 39.8*** 22.7*** 23.3*** 17.1*** 23.3*** 1.99 28.4***
LRcc 9.9*** 41.3*** 22.7*** 24.8*** 18.2*** 24.8*** 5.27* 29.9***
LRuc 2.05 1.03 3.28* 0.16 2.03 0.37 2.05 0.37
LRind 2.43 8.1*** 1.99 1.73 2.43 0.18 2.43 0.20
LRcc 4.48 9.11** 5.27* 1.89 4.47 0.55 4.48 0.57
LRuc 1.07 0.16 1.06 0.16 3.26* 0.00 3.26* 0.06
LRind 2.94* 4.01** 2.94* 0.31 2.00 0.02 2.00 0.00
LRcc 4.01 4.17 4.01 0.47 5.26* 0.02 5.26* 0.06
LRuc 1.06 0.04 0.03 0.37 1.06 0.00 0.37 0.00
LRind 2.95* 7.7*** 4.34** 3.53* 2.94* 0.02 3.57* 0.02
LRcc 4.01 7.77 4.36 3.90 4.01 0.02 3.94 0.02
LRuc 6.41** 1.47 0.03 0.46 0.03 0.04 1.06 0.37
LRind 1.31 10.6*** 4.33** 1.22 4.33** 0.44 2.94* 0.20
LRcc 7.72** 12.1*** 4.36 1.68 4.36 0.47 4.01 0.57

1% 5% 1% 5% 1% 5%
LRuc 2.03 0.66 3.26* 0.66 0.37 0.16
LRind 2.43 0.12 2.00 3.08* 3.56* 0.11
LRcc 4.47 0.78 5.26* 3.74 3.94 0.27
LRuc 3.26* 0.36 3.26* 0.36 0.03 1.99
LRind 2.00 0.18 2.00 0.18 4.33** 0.00
LRcc 5.26* 0.54 5.26* 0.54 4.36 1.99
LRuc 0.37 0.03 1.06 0.15 0.03 0.64
LRind 3.56* 0.06 2.94* 0.11 4.33** 0.27
LRcc 3.94 0.09 4.01 0.26 4.36 0.91
LRuc 1.06 0.15 1.06 0.15 0.37 1.03
LRind 2.95* 0.11 2.95* 0.11 3.57* 0.37
LRcc 4.01 0.26 4.01 0.26 3.94 1.40
LRuc 0.37 1.47 1.06 1.47 0.66 3.24*
LRind 3.56* 0.02 2.94* 0.02 6.6*** 0.29
LRcc 3.94 1.49 4.01 1.49 7.31** 3.53

HS Risk Metrics SGARCH AGARCH

SGARCH-t-(d)

TD3

TD4

TD5

TD7

TD9

Part I

Part II
AGARCH-t(d) SGARCH-t(d)-EVT

TD3

TD4

TD5

TD7

TD9
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Source: Author 

Table 9: Represents Value at Risk results for all route, the first and other columns represent 
the different model types used to measure VaR and its corresponding results, respectively. 
The second column, third and forth column represents average, minimum and 
maximumVaR1%;VaR5%, for the estimated period, respectively. The last column represents 
the hit violations sequence as a percentage, calculated as number of actual returns 
exceedings divided by the total number of observations for the estimated period.    

4. Conclusion 
In this study we have attempted to investigate the short-term risk exposure in the tanker freight 
markets by adopting conditional and unconditional value at risk measures, based on a conditional 
volatility framework. Empirical results indicate that FHS-conditional variance based methods produces 
the most accurate risk forecasts. In addition, the paper examines freight volatilities’ sensitivity to 
market shocks and their lasting effect. Furthermore, for the first time an attempt was made to 
investigate the possibility of tanker freight volatilities switching between high and low volatilities 
structures.  The evidence suggests that tanker freight volatility depends on a high and low, two-state 
regime structures; this explains the volatility clusters in freight returns; these volatility structures have 
consistent values across all tanker routes and have low tendency to shift from the low volatility 
structure to the high volatility structure, compared with the tendency of shifting from high to low 
volatilities, at any time, and once in the high volatility state, time duration is shorter compared to low 
volatility states. The implications of these finding to vessel operators and shipping portfolio managers 
are profound, as the ability to forecast the magnitude and duration of high and low freight volatility 
can play an important role in determining vessel operation, hedging and trading strategies. Market 

1% 5% 1% 5% 1% 5% 1% 5%

14.05% 9.94% 4.96% 3.50% 28.88% 20.42% 2.26% 3.90%
11.85% 8.38% 6.12% 4.33% 47.37% 33.49% 3.47% 6.25%
11.17% 7.90% 5.96% 4.21% 40.53% 28.66% 3.60% 6.68%
18.38% 9.17% 6.06% 3.62% 93.17% 44.66% 1.48% 5.38%
10.60% 7.49% 4.70% 3.32% 65.54% 46.34% 4.73% 7.64%

20.41% 9.16% 7.39% 3.27% 41.88% 18.84% 0.87% 4.47%
17.09% 7.71% 8.85% 3.99% 68.79% 30.91% 1.61% 6.77%
16.15% 7.27% 8.55% 3.87% 56.89% 26.05% 1.78% 7.55%
15.96% 7.18% 6.92% 3.11% 96.94% 43.89% 2.43% 8.33%
15.31% 6.90% 6.81% 3.07% 94.02% 42.64% 2.43% 8.68%

17.39% 9.22% 11.53% 5.27% 21.62% 11.23% 1.74% 5.86%
18.33% 8.80% 5.49% 2.79% 43.26% 20.28% 1.21% 5.42%
16.15% 7.27% 7.76% 3.75% 93.17% 44.66% 1.39% 5.38%
17.66% 9.13% 7.72% 3.81% 77.62% 40.71% 1.56% 5.47%
19.82% 10.01% 6.92% 3.11% 149.16% 69.94% 1.34% 5.55%
19.34% 9.74% 6.81% 3.07% 146.29% 69.13% 1.48% 5.60%
20.73% 8.51% 9.19% 3.77% 96.44% 40.49% 0.87% 6.12%

SGARCH-t-(d)
AGARCH-t-(d)

SGARCH-t-(d)-EVT

Value-at-Risk-FHS
HS

Risk Metrics
SGARCH
AGARCH

Non-normal Value-at-Risk
Risk Metrics

SGARCH
AGARCH

SGARCH-t-(d)
AGARCH-t-(d)

Risk Metrics
SGARCH
AGARCH

SGARCH-t-(d)
AGARCH-t-(d)

Model
Average VaR Minimum VaR Maximum VaR Hit Sequence

Normal Value-at-Risk
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conditions such as active operating areas, shorter voyages, low bunker consumptions and smaller size 
vessels are the main reason for less volatility persistence. In other words, freight volatilities for larger 
tanker vessels sizes are more sensitive to the size of markets shocks in comparison to smaller size 
tankers. These findings need to be explored more by conducting further research in the structure of 
freight volatility using markov switching models. In addition, to further research in the effect of 
bunker uncertainty and consumption, busy shipping areas and voyage duration on high and low 
freight volatilities.    
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